ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.00462
19
3

Hypergraphs with Edge-Dependent Vertex Weights: Spectral Clustering based on the 1-Laplacian

30 April 2023
Yu Zhu
Boning Li
Santiago Segarra
ArXivPDFHTML
Abstract

We propose a flexible framework for defining the 1-Laplacian of a hypergraph that incorporates edge-dependent vertex weights. These weights are able to reflect varying importance of vertices within a hyperedge, thus conferring the hypergraph model higher expressivity than homogeneous hypergraphs. We then utilize the eigenvector associated with the second smallest eigenvalue of the hypergraph 1-Laplacian to cluster the vertices. From a theoretical standpoint based on an adequately defined normalized Cheeger cut, this procedure is expected to achieve higher clustering accuracy than that based on the traditional Laplacian. Indeed, we confirm that this is the case using real-world datasets to demonstrate the effectiveness of the proposed spectral clustering approach. Moreover, we show that for a special case within our framework, the corresponding hypergraph 1-Laplacian is equivalent to the 1-Laplacian of a related graph, whose eigenvectors can be computed more efficiently, facilitating the adoption on larger datasets.

View on arXiv
Comments on this paper