ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1110.0027
  4. Cited By
Anytime Point-Based Approximations for Large POMDPs

Anytime Point-Based Approximations for Large POMDPs

30 September 2011
Joelle Pineau
Geoffrey J. Gordon
Sebastian Thrun
ArXivPDFHTML

Papers citing "Anytime Point-Based Approximations for Large POMDPs"

7 / 7 papers shown
Title
Incremental Pruning: A Simple, Fast, Exact Method for Partially
  Observable Markov Decision Processes
Incremental Pruning: A Simple, Fast, Exact Method for Partially Observable Markov Decision Processes
A. Cassandra
Michael L. Littman
N. Zhang
88
508
0
06 Feb 2013
Tractable Inference for Complex Stochastic Processes
Tractable Inference for Complex Stochastic Processes
Xavier Boyen
D. Koller
TPM
64
659
0
30 Jan 2013
Heuristic Search Value Iteration for POMDPs
Heuristic Search Value Iteration for POMDPs
Trey Smith
R. Simmons
85
545
0
11 Jul 2012
Perseus: Randomized Point-based Value Iteration for POMDPs
Perseus: Randomized Point-based Value Iteration for POMDPs
M. Spaan
N. Vlassis
93
766
0
09 Sep 2011
Speeding Up the Convergence of Value Iteration in Partially Observable
  Markov Decision Processes
Speeding Up the Convergence of Value Iteration in Partially Observable Markov Decision Processes
N. Zhang
Weihong Zhang
84
145
0
01 Jun 2011
Value-Function Approximations for Partially Observable Markov Decision
  Processes
Value-Function Approximations for Partially Observable Markov Decision Processes
M. Hauskrecht
77
226
0
01 Jun 2011
Decision-Theoretic Planning: Structural Assumptions and Computational
  Leverage
Decision-Theoretic Planning: Structural Assumptions and Computational Leverage
Craig Boutilier
T. Dean
S. Hanks
97
1,311
0
27 May 2011
1