Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1107.1270
Cited By
High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion
6 July 2011
Anima Anandkumar
Vincent Y. F. Tan
A. Willsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion"
42 / 42 papers shown
Title
Lasso with Latents: Efficient Estimation, Covariate Rescaling, and Computational-Statistical Gaps
Jonathan A. Kelner
Frederic Koehler
Raghu Meka
Dhruv Rohatgi
33
2
0
23 Feb 2024
Recovering the Graph Underlying Networked Dynamical Systems under Partial Observability: A Deep Learning Approach
Sérgio Machado
Anirudh Sridhar
P. Gil
J. Henriques
J. M. F. Moura
A. Santos
CML
12
2
0
08 Aug 2022
Learning Continuous Exponential Families Beyond Gaussian
C. Ren
Sidhant Misra
Marc Vuffray
A. Lokhov
39
5
0
18 Feb 2021
Algorithms for Learning Graphs in Financial Markets
José Vinícius de Miranda Cardoso
Jiaxi Ying
Daniel P. Palomar
CML
AIFin
61
17
0
31 Dec 2020
Learning Undirected Graphs in Financial Markets
J. Cardoso
Daniel P. Palomar
AIFin
20
26
0
20 May 2020
Learning Gaussian Graphical Models via Multiplicative Weights
Anamay Chaturvedi
Jonathan Scarlett
26
3
0
20 Feb 2020
Graph Learning Under Partial Observability
Vincenzo Matta
A. Santos
Ali H. Sayed
19
0
0
18 Dec 2019
Structured Graph Learning Via Laplacian Spectral Constraints
Sandeep Kumar
Jiaxi Ying
J. Cardoso
Daniel P. Palomar
45
57
0
24 Sep 2019
Topology Inference over Networks with Nonlinear Coupling
A. Santos
Vincenzo Matta
Ali H. Sayed
29
0
0
21 Jun 2019
Learning Some Popular Gaussian Graphical Models without Condition Number Bounds
Jonathan A. Kelner
Frederic Koehler
Raghu Meka
Ankur Moitra
28
32
0
03 May 2019
Total positivity in exponential families with application to binary variables
Steffen Lauritzen
Caroline Uhler
Piotr Zwiernik
13
13
0
01 May 2019
A Unified Framework for Structured Graph Learning via Spectral Constraints
Sandeep Kumar
Jiaxi Ying
José Vinícius de Miranda Cardoso
Daniel P. Palomar
29
111
0
22 Apr 2019
Graph Learning over Partially Observed Diffusion Networks: Role of Degree Concentration
Vincenzo Matta
A. Santos
Ali H. Sayed
14
2
0
05 Apr 2019
Structure Learning of Sparse GGMs over Multiple Access Networks
Mostafa Tavassolipour
Armin Karamzade
Reza Mirzaeifard
S. Motahari
M. M. Manzuri Shalmani
21
2
0
26 Dec 2018
Testing Changes in Communities for the Stochastic Block Model
Aditya Gangrade
Praveen Venkatesh
B. Nazer
Venkatesh Saligrama
20
3
0
29 Nov 2018
Identifiability in Gaussian Graphical Models
D. Soh
S. Tatikonda
34
3
0
10 Jun 2018
Stationary Geometric Graphical Model Selection
I. Soloveychik
Vahid Tarokh
13
0
0
10 Jun 2018
Local Tomography of Large Networks under the Low-Observability Regime
A. Santos
Vincenzo Matta
Ali H. Sayed
17
27
0
23 May 2018
Region Detection in Markov Random Fields: Gaussian Case
I. Soloveychik
Vahid Tarokh
21
2
0
12 Feb 2018
Lower Bounds for Two-Sample Structural Change Detection in Ising and Gaussian Models
Aditya Gangrade
B. Nazer
Venkatesh Saligrama
24
6
0
28 Oct 2017
Learning Graphs with Monotone Topology Properties and Multiple Connected Components
Eduardo Pavez
Hilmi E. Egilmez
Antonio Ortega
31
54
0
31 May 2017
Information Theoretic Optimal Learning of Gaussian Graphical Models
Sidhant Misra
Marc Vuffray
A. Lokhov
18
5
0
15 Mar 2017
An Efficient Pseudo-likelihood Method for Sparse Binary Pairwise Markov Network Estimation
Sinong Geng
Zhaobin Kuang
David Page
21
11
0
27 Feb 2017
Maximum likelihood estimation in Gaussian models under total positivity
Steffen Lauritzen
Caroline Uhler
Piotr Zwiernik
15
69
0
14 Feb 2017
Mixing Times and Structural Inference for Bernoulli Autoregressive Processes
Dimitrios Katselis
Carolyn L. Beck
R. Srikant
24
14
0
19 Dec 2016
Lower Bounds on Active Learning for Graphical Model Selection
Jonathan Scarlett
V. Cevher
33
8
0
08 Jul 2016
On the Difficulty of Selecting Ising Models with Approximate Recovery
Jonathan Scarlett
V. Cevher
33
12
0
11 Feb 2016
Active Learning Algorithms for Graphical Model Selection
Gautam Dasarathy
Aarti Singh
Maria-Florina Balcan
Jonghyuk Park
21
25
0
01 Feb 2016
Information-theoretic limits of Bayesian network structure learning
Asish Ghoshal
Jean Honorio
27
25
0
27 Jan 2016
New Optimisation Methods for Machine Learning
Aaron Defazio
44
6
0
09 Oct 2015
Efficient Neighborhood Selection for Gaussian Graphical Models
Yingxiang Yang
Jalal Etesami
Negar Kiyavash
TPM
16
1
0
22 Sep 2015
High-dimensional consistency in score-based and hybrid structure learning
Preetam Nandy
Alain Hauser
Marloes H. Maathuis
39
129
0
09 Jul 2015
On model misspecification and KL separation for Gaussian graphical models
Varun Jog
Po-Ling Loh
42
15
0
10 Jan 2015
Estimation of positive definite M-matrices and structure learning for attractive Gaussian Markov Random fields
M. Slawski
Matthias Hein
43
104
0
26 Apr 2014
Active Learning for Undirected Graphical Model Selection
Divyanshu Vats
Robert D. Nowak
Richard G. Baraniuk
46
8
0
13 Apr 2014
Statistical Structure Learning, Towards a Robust Smart Grid
Hanie Sedghi
E. Jonckheere
159
4
0
07 Mar 2014
Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Noisy Matrix Decomposition
Hanie Sedghi
Anima Anandkumar
E. Jonckheere
48
13
0
20 Feb 2014
Concave Penalized Estimation of Sparse Gaussian Bayesian Networks
Bryon Aragam
Qing Zhou
CML
57
107
0
04 Jan 2014
A Junction Tree Framework for Undirected Graphical Model Selection
Divyanshu Vats
Robert D. Nowak
CML
54
8
0
17 Apr 2013
Pairwise MRF Calibration by Perturbation of the Bethe Reference Point
Cyril Furtlehner
Yufei Han
Jean-Marc Lasgouttes
Victorin Martin
45
5
0
19 Oct 2012
Learning loopy graphical models with latent variables: Efficient methods and guarantees
Anima Anandkumar
R. Valluvan
47
50
0
17 Mar 2012
High-dimensional structure estimation in Ising models: Local separation criterion
Anima Anandkumar
Vincent Y. F. Tan
Furong Huang
A. Willsky
55
114
0
08 Jul 2011
1