ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1105.5462
  4. Cited By
Variational Probabilistic Inference and the QMR-DT Network

Variational Probabilistic Inference and the QMR-DT Network

27 May 2011
Tommi Jaakkola
Michael I. Jordan
    BDL
ArXivPDFHTML

Papers citing "Variational Probabilistic Inference and the QMR-DT Network"

35 / 35 papers shown
Title
Scalable Bayesian Image-on-Scalar Regression for Population-Scale
  Neuroimaging Data Analysis
Scalable Bayesian Image-on-Scalar Regression for Population-Scale Neuroimaging Data Analysis
Yuliang Xu
Timothy D. Johnson
Thomas E. Nichols
Jian Kang
21
0
0
19 Apr 2024
Learning noisy-OR Bayesian Networks with Max-Product Belief Propagation
Learning noisy-OR Bayesian Networks with Max-Product Belief Propagation
Antoine Dedieu
Guangyao Zhou
Dileep George
Miguel Lazaro-Gredilla
BDL
23
2
0
31 Jan 2023
Amortized Variational Inference: A Systematic Review
Amortized Variational Inference: A Systematic Review
Ankush Ganguly
Sanjana Jain
Ukrit Watchareeruetai
25
14
0
22 Sep 2022
Mixed-Effect Thompson Sampling
Mixed-Effect Thompson Sampling
Imad Aouali
B. Kveton
S. Katariya
OffRL
45
11
0
30 May 2022
A Bayesian Approach for Medical Inquiry and Disease Inference in
  Automated Differential Diagnosis
A Bayesian Approach for Medical Inquiry and Disease Inference in Automated Differential Diagnosis
Hong Guan
Chitta Baral
90
9
0
15 Oct 2021
Efficient Semi-Implicit Variational Inference
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
85
6
0
15 Jan 2021
Convex Polytope Trees
Convex Polytope Trees
Mohammadreza Armandpour
Mingyuan Zhou
6
1
0
21 Oct 2020
ABC-Di: Approximate Bayesian Computation for Discrete Data
ABC-Di: Approximate Bayesian Computation for Discrete Data
I. Auzina
Jakub M. Tomczak
8
0
0
19 Oct 2020
Bloom Origami Assays: Practical Group Testing
Bloom Origami Assays: Practical Group Testing
L. Abraham
Gary Bécigneul
Benjamin Coleman
Bernhard Schölkopf
Anshumali Shrivastava
Alex Smola
6
5
0
21 Jul 2020
Belief Propagation Neural Networks
Belief Propagation Neural Networks
Jonathan Kuck
Shuvam Chakraborty
Hao Tang
Rachel Luo
Jiaming Song
Ashish Sabharwal
Stefano Ermon
10
39
0
01 Jul 2020
The accuracy vs. coverage trade-off in patient-facing diagnosis models
The accuracy vs. coverage trade-off in patient-facing diagnosis models
A. Kannan
Jason Alan Fries
Eric R. Kramer
Jen Jen Chen
N. Shah
X. Amatriain
9
7
0
11 Dec 2019
Amortized Inference of Variational Bounds for Learning Noisy-OR
Amortized Inference of Variational Bounds for Learning Noisy-OR
Yiming Yan
Melissa Ailem
Fei Sha
BDL
11
1
0
06 Jun 2019
Universal Marginalizer for Amortised Inference and Embedding of
  Generative Models
Universal Marginalizer for Amortised Inference and Embedding of Generative Models
R. Walecki
A. Buchard
Kostis Gourgoulias
Chris Hart
Maria Lomeli
Alexandre Khae Wu Navarro
Max Zwiessele
Yura N. Perov
Saurabh Johri
BDL
13
2
0
12 Nov 2018
Learning from the experts: From expert systems to machine-learned
  diagnosis models
Learning from the experts: From expert systems to machine-learned diagnosis models
Murali Ravuri
A. Kannan
Geoffrey Tso
X. Amatriain
17
18
0
21 Apr 2018
Survey on Models and Techniques for Root-Cause Analysis
Survey on Models and Techniques for Root-Cause Analysis
Marc Solé
V. Muntés-Mulero
Annie Ibrahim Rana
G. Estrada
8
93
0
30 Jan 2017
Hierarchical compositional feature learning
Hierarchical compositional feature learning
Miguel Lazaro-Gredilla
Yi Liu
D. Phoenix
Dileep George
BDL
OCL
27
12
0
07 Nov 2016
Structured Factored Inference: A Framework for Automated Reasoning in
  Probabilistic Programming Languages
Structured Factored Inference: A Framework for Automated Reasoning in Probabilistic Programming Languages
Avi Pfeffer
Brian E. Ruttenberg
William Kretschmer
LRM
11
4
0
10 Jun 2016
Variational hybridization and transformation for large inaccurate
  noisy-or networks
Variational hybridization and transformation for large inaccurate noisy-or networks
Yusheng Xie
Nan Du
Wei Fan
Jing Zhai
Weicheng Zhu
BDL
9
1
0
20 May 2016
A latent-observed dissimilarity measure
A latent-observed dissimilarity measure
Y. T. G. S. O. I. Science
14
0
0
30 Mar 2016
Subsumptive reflection in SNOMED CT: a large description logic-based
  terminology for diagnosis
Subsumptive reflection in SNOMED CT: a large description logic-based terminology for diagnosis
Mohan Rao
18
0
0
11 Dec 2015
Active Tuples-based Scheme for Bounding Posterior Beliefs
Active Tuples-based Scheme for Bounding Posterior Beliefs
Bozhena Bidyuk
R. Dechter
E. Rollon
TPM
29
7
0
16 Jan 2014
Unsupervised Learning of Noisy-Or Bayesian Networks
Unsupervised Learning of Noisy-Or Bayesian Networks
Y. Halpern
David Sontag
26
38
0
26 Sep 2013
Simulation Approaches to General Probabilistic Inference on Belief
  Networks
Simulation Approaches to General Probabilistic Inference on Belief Networks
Ross D. Shachter
M. Peot
TPM
75
391
0
27 Mar 2013
Loopy Belief Propagation for Approximate Inference: An Empirical Study
Loopy Belief Propagation for Approximate Inference: An Empirical Study
Kevin P. Murphy
Yair Weiss
Michael I. Jordan
3DV
72
1,879
0
23 Jan 2013
A Variational Approximation for Bayesian Networks with Discrete and
  Continuous Latent Variables
A Variational Approximation for Bayesian Networks with Discrete and Continuous Latent Variables
Kevin P. Murphy
60
116
0
23 Jan 2013
Variational Approximations between Mean Field Theory and the Junction
  Tree Algorithm
Variational Approximations between Mean Field Theory and the Junction Tree Algorithm
W. Wiegerinck
38
102
0
16 Jan 2013
Recognition Networks for Approximate Inference in BN20 Networks
Recognition Networks for Approximate Inference in BN20 Networks
Q. Morris
BDL
44
27
0
10 Jan 2013
Variational MCMC
Variational MCMC
Nando de Freitas
Pedro A. d. F. R. Højen-Sørensen
Michael I. Jordan
Stuart J. Russell
BDL
45
105
0
10 Jan 2013
Bethe Bounds and Approximating the Global Optimum
Bethe Bounds and Approximating the Global Optimum
Adrian Weller
Tony Jebara
34
15
0
31 Dec 2012
CLP(BN): Constraint Logic Programming for Probabilistic Knowledge
CLP(BN): Constraint Logic Programming for Probabilistic Knowledge
Vítor Santos Costa
David Page
Maleeha Qazi
James Cussens
36
125
0
19 Oct 2012
Efficient Test Selection in Active Diagnosis via Entropy Approximation
Efficient Test Selection in Active Diagnosis via Entropy Approximation
A. Zheng
Irina Rish
A. Beygelzimer
45
69
0
04 Jul 2012
Loopy Belief Propagation in Bayesian Networks : origin and possibilistic
  perspectives
Loopy Belief Propagation in Bayesian Networks : origin and possibilistic perspectives
A. Ajroud
Mohamed Nazih Omri
H. Youssef
S. Benferhat
3DV
39
3
0
05 Jun 2012
Bound Propagation
Bound Propagation
H. Kappen
Martijn A. R. Leisink
61
31
0
24 Jun 2011
Mean Field Methods for a Special Class of Belief Networks
Mean Field Methods for a Special Class of Belief Networks
Chiranjib Bhattacharyya
S. Keerthi
51
8
0
01 Jun 2011
Norm-Product Belief Propagation: Primal-Dual Message-Passing for
  Approximate Inference
Norm-Product Belief Propagation: Primal-Dual Message-Passing for Approximate Inference
Tamir Hazan
Amnon Shashua
TPM
58
123
0
18 Mar 2009
1