Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1104.5617
Cited By
Learning high-dimensional directed acyclic graphs with latent and selection variables
29 April 2011
Diego Colombo
Marloes H. Maathuis
M. Kalisch
Thomas S. Richardson
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning high-dimensional directed acyclic graphs with latent and selection variables"
50 / 62 papers shown
Title
dcFCI: Robust Causal Discovery Under Latent Confounding, Unfaithfulness, and Mixed Data
Adèle Ribeiro
Dominik Heider
CML
26
0
0
10 May 2025
Characterization and Learning of Causal Graphs from Hard Interventions
Zihan Zhou
Muhammad Qasim Elahi
Murat Kocaoglu
CML
87
0
0
02 May 2025
Constraint-based causal discovery with tiered background knowledge and latent variables in single or overlapping datasets
Christine W Bang
Vanessa Didelez
CML
59
0
0
27 Mar 2025
SNAP: Sequential Non-Ancestor Pruning for Targeted Causal Effect Estimation With an Unknown Graph
Mátyás Schubert
Tom Claassen
Sara Magliacane
CML
71
0
0
11 Feb 2025
Causal Discovery via Bayesian Optimization
Bao Duong
Sunil Gupta
Thin Nguyen
44
0
0
28 Jan 2025
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
76
15
0
10 Jan 2025
A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery
Yingyu Lin
Yuxing Huang
Wenqin Liu
Haoran Deng
Ignavier Ng
Kun Zhang
Mingming Gong
Yi-An Ma
Biwei Huang
39
1
0
08 Oct 2024
Causal Discovery over High-Dimensional Structured Hypothesis Spaces with Causal Graph Partitioning
Ashka Shah
Adela DePavia
Nathaniel Hudson
Ian T. Foster
Rick L. Stevens
CML
31
1
0
10 Jun 2024
Local Causal Structure Learning in the Presence of Latent Variables
Feng Xie
Zheng Li
Peng Wu
Yan Zeng
Chunchen Liu
Zhi Geng
CML
34
2
0
25 May 2024
Continual Model-based Reinforcement Learning for Data Efficient Wireless Network Optimisation
Cengis Hasan
Alexandros Agapitos
David Lynch
Alberto Castagna
Giorgio Cruciata
Hao Wang
Aleksandar Milenovic
43
0
0
30 Apr 2024
Towards Automated Causal Discovery: a case study on 5G telecommunication data
Konstantina Biza
Antonios Ntroumpogiannis
Sofia Triantafillou
Ioannis Tsamardinos
31
0
0
22 Feb 2024
CURE: Simulation-Augmented Auto-Tuning in Robotics
Md. Abir Hossen
Sonam Kharade
Jason M. O'Kane
B. Schmerl
David Garlan
Pooyan Jamshidi
24
1
0
08 Feb 2024
On the Three Demons in Causality in Finance: Time Resolution, Nonstationarity, and Latent Factors
Xinshuai Dong
Haoyue Dai
Yewen Fan
Songyao Jin
Sathyamoorthy Rajendran
Kun Zhang
CML
39
1
0
28 Dec 2023
Identification of Causal Structure with Latent Variables Based on Higher Order Cumulants
Wei Chen
Zhiyi Huang
Ruichu Cai
Zhifeng Hao
Kun Zhang
CML
17
3
0
19 Dec 2023
Recovering Linear Causal Models with Latent Variables via Cholesky Factorization of Covariance Matrix
Yunfeng Cai
Xu Li
Ming Sun
Ping Li
CML
21
1
0
01 Nov 2023
Human-in-the-Loop Causal Discovery under Latent Confounding using Ancestral GFlowNets
Tiago da Silva
Eliezer de Souza da Silva
Adèle Ribeiro
António Góis
Dominik Heider
Samuel Kaski
Diego Mesquita
CML
49
6
0
21 Sep 2023
Neuro-Causal Factor Analysis
Alex Markham
Ming-Yu Liu
Bryon Aragam
Liam Solus
CML
26
3
0
31 May 2023
Causal Discovery with Latent Confounders Based on Higher-Order Cumulants
Ruichu Cai
Zhiyi Huang
Wei-Neng Chen
Z. Hao
Kun Zhang
CML
32
9
0
31 May 2023
Causality-Aided Trade-off Analysis for Machine Learning Fairness
Zhenlan Ji
Pingchuan Ma
Shuai Wang
Yanhui Li
FaML
31
7
0
22 May 2023
A Survey on Causal Discovery: Theory and Practice
Alessio Zanga
Fabio Stella
CML
27
38
0
17 May 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
31
24
0
27 Mar 2023
CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary Time Series Data
Muhammad Hasan Ferdous
Uzma Hasan
Md. Osman Gani
CML
30
3
0
07 Feb 2023
A Survey of Methods, Challenges and Perspectives in Causality
Gael Gendron
Michael Witbrock
Gillian Dobbie
OOD
AI4CE
CML
29
12
0
01 Feb 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
27
1
0
16 Jan 2023
Deep Learning of Causal Structures in High Dimensions
Kai Lagemann
C. Lagemann
B. Taschler
S. Mukherjee
CML
BDL
AI4CE
30
29
0
09 Dec 2022
Fast Parallel Bayesian Network Structure Learning
Jiantong Jiang
Zeyi Wen
Ajmal Saeed Mian
25
6
0
08 Dec 2022
Initial Results for Pairwise Causal Discovery Using Quantitative Information Flow
Felipe Giori
Flavio Figueiredo
CML
14
1
0
02 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
31
11
0
07 Nov 2022
Causal Inference for De-biasing Motion Estimation from Robotic Observational Data
Junhong Xu
Kai-Li Yin
J. Gregory
Lantao Liu
CML
13
3
0
17 Oct 2022
Truncated Matrix Power Iteration for Differentiable DAG Learning
Zhen Zhang
Ignavier Ng
Dong Gong
Yuhang Liu
Ehsan Abbasnejad
Mingming Gong
Kun Zhang
Javen Qinfeng Shi
32
25
0
30 Aug 2022
Valid Inference after Causal Discovery
Paula Gradu
Tijana Zrnic
Yixin Wang
Michael I. Jordan
CML
26
8
0
11 Aug 2022
Discovering Ancestral Instrumental Variables for Causal Inference from Observational Data
Debo Cheng
Jiuyong Li
Lin Liu
Kui Yu
Thuc Duy Lee
Hefei University of Technology
CML
19
13
0
04 Jun 2022
Differentiable Causal Discovery Under Latent Interventions
Gonccalo R. A. Faria
André F. T. Martins
Mário A. T. Figueiredo
BDL
CML
OOD
45
23
0
04 Mar 2022
Unicorn: Reasoning about Configurable System Performance through the lens of Causality
Md Shahriar Iqbal
R. Krishna
Mohammad Ali Javidian
Baishakhi Ray
Pooyan Jamshidi
LRM
26
27
0
20 Jan 2022
Iterative Causal Discovery in the Possible Presence of Latent Confounders and Selection Bias
R. Y. Rohekar
Shami Nisimov
Yaniv Gurwicz
Gal Novik
CML
135
25
0
07 Nov 2021
Recursive Causal Structure Learning in the Presence of Latent Variables and Selection Bias
S. Akbari
Ehsan Mokhtarian
AmirEmad Ghassami
Negar Kiyavash
CML
11
24
0
22 Oct 2021
A survey of Bayesian Network structure learning
N. K. Kitson
Anthony C. Constantinou
Zhi-gao Guo
Yang Liu
Kiattikun Chobtham
CML
24
182
0
23 Sep 2021
Data Generating Process to Evaluate Causal Discovery Techniques for Time Series Data
A. Lawrence
Marcus Kaiser
Rui Sampaio
Maksim Sipos
CML
AI4TS
19
17
0
16 Apr 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
37
296
0
03 Mar 2021
Differentiable Causal Discovery Under Unmeasured Confounding
Rohit Bhattacharya
Tushar Nagarajan
Daniel Malinsky
I. Shpitser
CML
15
60
0
14 Oct 2020
Large-scale empirical validation of Bayesian Network structure learning algorithms with noisy data
Anthony C. Constantinou
Yang Liu
Kiattikun Chobtham
Zhi-gao Guo
N. K. Kitson
CML
30
61
0
18 May 2020
DYNOTEARS: Structure Learning from Time-Series Data
Roxana Pamfil
Nisara Sriwattanaworachai
Shaan Desai
Philip Pilgerstorfer
Paul Beaumont
K. Georgatzis
Bryon Aragam
CML
AI4TS
BDL
22
187
0
02 Feb 2020
Causality-based Feature Selection: Methods and Evaluations
Kui Yu
Xianjie Guo
Lin Liu
Jiuyong Li
Hao Wang
Zhaolong Ling
Xindong Wu
CML
24
92
0
17 Nov 2019
Ordering-Based Causal Structure Learning in the Presence of Latent Variables
D. Bernstein
Basil Saeed
C. Squires
Caroline Uhler
CML
27
40
0
20 Oct 2019
The Global Markov Property for a Mixture of DAGs
Eric V. Strobl
14
3
0
12 Sep 2019
Causal Discovery with a Mixture of DAGs
Eric V. Strobl
CML
16
17
0
28 Jan 2019
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo
Lu Cheng
Jundong Li
P. R. Hahn
Huan Liu
CML
32
168
0
25 Sep 2018
Causal Queries from Observational Data in Biological Systems via Bayesian Networks: An Empirical Study in Small Networks
Alex E. White
Matthieu Vignes
CML
15
5
0
04 May 2018
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Diviyan Kalainathan
Olivier Goudet
Isabelle M Guyon
David Lopez-Paz
Michèle Sebag
CML
24
93
0
13 Mar 2018
Learning Large-Scale Bayesian Networks with the sparsebn Package
Bryon Aragam
J. Gu
Qing Zhou
CML
19
55
0
11 Mar 2017
1
2
Next