14
17

Causal Discovery with a Mixture of DAGs

Abstract

Causal processes in biomedicine may contain cycles, evolve over time or differ between populations. However, many graphical models cannot accommodate these conditions. We propose to model causation using a mixture of directed cyclic graphs (DAGs), where the joint distribution in a population follows a DAG at any single point in time but potentially different DAGs across time. We also introduce an algorithm called Causal Inference over Mixtures that uses longitudinal data to infer a graph summarizing the causal relations generated from a mixture of DAGs. Experiments demonstrate improved performance compared to prior approaches.

View on arXiv
Comments on this paper