ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1103.5399
  4. Cited By
Parameter Estimation for Hidden Markov Models with Intractable
  Likelihoods

Parameter Estimation for Hidden Markov Models with Intractable Likelihoods

28 March 2011
Elena Ehrlich
Sumeetpal S. Singh
Ajay Jasra
N. Kantas
    TPM
ArXivPDFHTML

Papers citing "Parameter Estimation for Hidden Markov Models with Intractable Likelihoods"

22 / 22 papers shown
Title
Copula Approximate Bayesian Computation Using Distribution Random
  Forests
Copula Approximate Bayesian Computation Using Distribution Random Forests
G. Karabatsos
44
1
0
28 Feb 2024
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
37
15
0
01 Aug 2022
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
41
26
0
20 Dec 2021
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
28
1
0
02 Nov 2021
Variational Bayes in State Space Models: Inferential and Predictive
  Accuracy
Variational Bayes in State Space Models: Inferential and Predictive Accuracy
David T. Frazier
Rubén Loaiza-Maya
G. Martin
11
13
0
23 Jun 2021
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
42
17
0
14 Apr 2020
A unified framework for 21cm tomography sample generation and parameter
  inference with Progressively Growing GANs
A unified framework for 21cm tomography sample generation and parameter inference with Progressively Growing GANs
Florian List
G. Lewis
13
14
0
19 Feb 2020
Likelihood-free approximate Gibbs sampling
Likelihood-free approximate Gibbs sampling
G. S. Rodrigues
David J. Nott
Scott A. Sisson
30
24
0
11 Jun 2019
ABC Samplers
ABC Samplers
Y. Fan
Scott A. Sisson
22
28
0
26 Feb 2018
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
T. Kajihara
Motonobu Kanagawa
Keisuke Yamazaki
Kenji Fukumizu
37
13
0
23 Feb 2018
Identification of multi-object dynamical systems: consistency and Fisher
  information
Identification of multi-object dynamical systems: consistency and Fisher information
J. Houssineau
Sumeetpal S. Singh
Ajay Jasra
13
4
0
14 Jul 2017
Learning of state-space models with highly informative observations: a
  tempered Sequential Monte Carlo solution
Learning of state-space models with highly informative observations: a tempered Sequential Monte Carlo solution
Andreas Svensson
Thomas B. Schon
Fredrik Lindsten
22
17
0
06 Feb 2017
Auxiliary Likelihood-Based Approximate Bayesian Computation in State
  Space Models
Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models
G. Martin
Brendan P. M. McCabe
David T. Frazier
Worapree Maneesoonthorn
Christian P. Robert
20
44
0
27 Apr 2016
On the Asymptotic Efficiency of Approximate Bayesian Computation
  Estimators
On the Asymptotic Efficiency of Approximate Bayesian Computation Estimators
Wentao Li
Paul Fearnhead
38
62
0
10 Jun 2015
Particle ancestor sampling for near-degenerate or intractable state
  transition models
Particle ancestor sampling for near-degenerate or intractable state transition models
Fredrik Lindsten
P. Bunch
Sumeetpal S. Singh
Thomas B. Schon
21
18
0
23 May 2015
Quasi-Newton particle Metropolis-Hastings
Quasi-Newton particle Metropolis-Hastings
J. Dahlin
Fredrik Lindsten
Thomas B. Schon
27
9
0
12 Feb 2015
Parameter Estimation in Hidden Markov Models with Intractable
  Likelihoods Using Sequential Monte Carlo
Parameter Estimation in Hidden Markov Models with Intractable Likelihoods Using Sequential Monte Carlo
S. Yıldırım
Sumeetpal S. Singh
Thomas Dean
Ajay Jasra
28
36
0
17 Nov 2013
Approximate Bayesian Computation for Smoothing
Approximate Bayesian Computation for Smoothing
James S. Martin
Ajay Jasra
Sumeetpal S. Singh
N. Whiteley
E. McCoy
37
25
0
22 Jun 2012
Particle-kernel estimation of the filter density in state-space models
Particle-kernel estimation of the filter density in state-space models
Dan Crisan
Joaquín Míguez
63
41
0
24 Nov 2011
Asymptotic Behaviour of Approximate Bayesian Estimators
Asymptotic Behaviour of Approximate Bayesian Estimators
Thomas Dean
Sumeetpal S. Singh
59
19
0
18 May 2011
Lack of confidence in ABC model choice
Lack of confidence in ABC model choice
Christian P. Robert
J. Cornuet
Jean-Michel Marin
Natesh Pillai
68
50
0
22 Feb 2011
Approximate Bayesian Computational methods
Approximate Bayesian Computational methods
Jean-Michel Marin
Pierre Pudlo
Christian P. Robert
Robin J. Ryder
91
859
0
05 Jan 2011
1