Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1012.1367
Cited By
Optimal Distributed Online Prediction using Mini-Batches
7 December 2010
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimal Distributed Online Prediction using Mini-Batches"
47 / 97 papers shown
Title
Effective Parallelisation for Machine Learning
Michael Kamp
Mario Boley
Olana Missura
Thomas Gärtner
11
12
0
08 Oct 2018
Anytime Stochastic Gradient Descent: A Time to Hear from all the Workers
Nuwan S. Ferdinand
S. Draper
13
19
0
06 Oct 2018
Graph-Dependent Implicit Regularisation for Distributed Stochastic Subgradient Descent
Dominic Richards
Patrick Rebeschini
16
18
0
18 Sep 2018
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
13
348
0
22 Aug 2018
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
48
429
0
22 Aug 2018
Parallelization does not Accelerate Convex Optimization: Adaptivity Lower Bounds for Non-smooth Convex Minimization
Eric Balkanski
Yaron Singer
16
31
0
12 Aug 2018
Efficient Decentralized Deep Learning by Dynamic Model Averaging
Michael Kamp
Linara Adilova
Joachim Sicking
Fabian Hüger
Peter Schlicht
Tim Wirtz
Stefan Wrobel
27
128
0
09 Jul 2018
The Effect of Network Width on the Performance of Large-batch Training
Lingjiao Chen
Hongyi Wang
Jinman Zhao
Dimitris Papailiopoulos
Paraschos Koutris
10
22
0
11 Jun 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
46
1,043
0
24 May 2018
Stochastic modified equations for the asynchronous stochastic gradient descent
Jing An
Jian-wei Lu
Lexing Ying
21
79
0
21 May 2018
On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes
Xiaoyun Li
Francesco Orabona
32
290
0
21 May 2018
Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD
Sanghamitra Dutta
Gauri Joshi
Soumyadip Ghosh
Parijat Dube
P. Nagpurkar
12
193
0
03 Mar 2018
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
Tal Ben-Nun
Torsten Hoefler
GNN
30
701
0
26 Feb 2018
Online Learning: A Comprehensive Survey
S. Hoi
Doyen Sahoo
Jing Lu
P. Zhao
OffRL
27
630
0
08 Feb 2018
Convergence Analysis of Distributed Stochastic Gradient Descent with Shuffling
Qi Meng
Wei-neng Chen
Yue Wang
Zhi-Ming Ma
Tie-Yan Liu
FedML
16
101
0
29 Sep 2017
Stochastic Nonconvex Optimization with Large Minibatches
Weiran Wang
Nathan Srebro
36
26
0
25 Sep 2017
On the convergence properties of a
K
K
K
-step averaging stochastic gradient descent algorithm for nonconvex optimization
Fan Zhou
Guojing Cong
32
232
0
03 Aug 2017
Stochastic Optimization from Distributed, Streaming Data in Rate-limited Networks
M. Nokleby
W. Bajwa
13
16
0
25 Apr 2017
Stochastic Composite Least-Squares Regression with convergence rate O(1/n)
Nicolas Flammarion
Francis R. Bach
19
27
0
21 Feb 2017
Memory and Communication Efficient Distributed Stochastic Optimization with Minibatch-Prox
Jialei Wang
Weiran Wang
Nathan Srebro
10
54
0
21 Feb 2017
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
A. Nathan
Diego Klabjan
22
13
0
31 Oct 2016
Analysis and Implementation of an Asynchronous Optimization Algorithm for the Parameter Server
Arda Aytekin
Hamid Reza Feyzmahdavian
M. Johansson
14
54
0
18 Oct 2016
Parallelizing Stochastic Gradient Descent for Least Squares Regression: mini-batching, averaging, and model misspecification
Prateek Jain
Sham Kakade
Rahul Kidambi
Praneeth Netrapalli
Aaron Sidford
MoMe
13
36
0
12 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
22
1,876
0
08 Oct 2016
Distributed learning with regularized least squares
Shaobo Lin
Xin Guo
Ding-Xuan Zhou
35
190
0
11 Aug 2016
Bootstrap Model Aggregation for Distributed Statistical Learning
J. Han
Qiang Liu
FedML
13
8
0
04 Jul 2016
Parallel SGD: When does averaging help?
Jian Zhang
Christopher De Sa
Ioannis Mitliagkas
Christopher Ré
MoMe
FedML
46
109
0
23 Jun 2016
Alternative asymptotics for cointegration tests in large VARs
Junhong Lin
Lorenzo Rosasco
20
43
0
28 May 2016
Accelerating Deep Neural Network Training with Inconsistent Stochastic Gradient Descent
Linnan Wang
Yi Yang
Martin Renqiang Min
S. Chakradhar
13
91
0
17 Mar 2016
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization
Xiangru Lian
Yijun Huang
Y. Li
Ji Liu
25
498
0
27 Jun 2015
On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
30
194
0
23 Jun 2015
Communication Complexity of Distributed Convex Learning and Optimization
Yossi Arjevani
Ohad Shamir
29
205
0
05 Jun 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
20
273
0
16 Apr 2015
Communication-efficient sparse regression: a one-shot approach
J. Lee
Yuekai Sun
Qiang Liu
Jonathan E. Taylor
35
65
0
14 Mar 2015
Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss
Yuchen Zhang
Lin Xiao
33
72
0
01 Jan 2015
Online and Stochastic Gradient Methods for Non-decomposable Loss Functions
Purushottam Kar
Harikrishna Narasimhan
Prateek Jain
56
71
0
24 Oct 2014
Median Selection Subset Aggregation for Parallel Inference
Xiangyu Wang
Peichao Peng
David B. Dunson
36
23
0
24 Oct 2014
Distributed Detection : Finite-time Analysis and Impact of Network Topology
Shahin Shahrampour
Alexander Rakhlin
Ali Jadbabaie
49
114
0
30 Sep 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
24
353
0
04 Sep 2014
Exploiting Smoothness in Statistical Learning, Sequential Prediction, and Stochastic Optimization
M. Mahdavi
57
4
0
19 Jul 2014
A Distributed Frank-Wolfe Algorithm for Communication-Efficient Sparse Learning
A. Bellet
Yingyu Liang
A. Garakani
Maria-Florina Balcan
Fei Sha
FedML
30
49
0
09 Apr 2014
Fundamental Limits of Online and Distributed Algorithms for Statistical Learning and Estimation
Ohad Shamir
58
108
0
14 Nov 2013
Exponentially Fast Parameter Estimation in Networks Using Distributed Dual Averaging
Shahin Shahrampour
Ali Jadbabaie
FedML
51
76
0
10 Sep 2013
MixedGrad: An O(1/T) Convergence Rate Algorithm for Stochastic Smooth Optimization
M. Mahdavi
R. L. Jin
53
17
0
26 Jul 2013
Mini-Batch Primal and Dual Methods for SVMs
Martin Takáč
A. Bijral
Peter Richtárik
Nathan Srebro
28
194
0
10 Mar 2013
Online Alternating Direction Method
Huahua Wang
Arindam Banerjee
56
165
0
27 Jun 2012
Stochastic Smoothing for Nonsmooth Minimizations: Accelerating SGD by Exploiting Structure
H. Ouyang
Alexander G. Gray
43
28
0
21 May 2012
Previous
1
2