Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1010.4345
Cited By
Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain
21 October 2010
A. Belloni
Daniel L. Chen
Victor Chernozhukov
Christian B. Hansen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain"
27 / 27 papers shown
Title
Learning Decision Policies with Instrumental Variables through Double Machine Learning
Daqian Shao
Ashkan Soleymani
Francesco Quinzan
Marta Z. Kwiatkowska
36
1
0
14 May 2024
Optimality of Matched-Pair Designs in Randomized Controlled Trials
Yuehao Bai
26
52
0
15 Jun 2022
Asymptotic normality in linear regression with approximately sparse structure
Saulius Jokubaitis
R. Leipus
20
1
0
08 Mar 2022
Improving Inference from Simple Instruments through Compliance Estimation
S. Coussens
Jann Spiess
CML
20
14
0
08 Aug 2021
The Bias-Variance Tradeoff of Doubly Robust Estimator with Targeted
L
1
L_1
L
1
regularized Neural Networks Predictions
M. Rostami
O. Saarela
M. Escobar
40
1
0
02 Aug 2021
Machine Learning for Variance Reduction in Online Experiments
Yongyi Guo
Dominic Coey
Mikael Konutgan
Wenting Li
Ch. P. Schoener
Matt Goldman
16
34
0
14 Jun 2021
Mostly Harmless Machine Learning: Learning Optimal Instruments in Linear IV Models
Jiafeng Chen
Daniel L. Chen
Greg Lewis
CML
25
15
0
12 Nov 2020
Rejoinder: On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning
Lin Liu
Rajarshi Mukherjee
J. M. Robins
CML
33
16
0
07 Aug 2020
Lasso Inference for High-Dimensional Time Series
R. Adámek
Stephan Smeekes
Ines Wilms
AI4TS
30
33
0
21 Jul 2020
On Deep Instrumental Variables Estimate
Ruiqi Liu
Zuofeng Shang
Guang Cheng
24
25
0
30 Apr 2020
Minimax Semiparametric Learning With Approximate Sparsity
Jelena Bradic
Victor Chernozhukov
Whitney Newey
Yinchu Zhu
47
21
0
27 Dec 2019
Machine learning in policy evaluation: new tools for causal inference
N. Kreif
K. DiazOrdaz
ELM
CML
19
45
0
01 Mar 2019
Automatic Debiased Machine Learning of Causal and Structural Effects
Victor Chernozhukov
Whitney Newey
Rahul Singh
CML
AI4CE
24
103
0
14 Sep 2018
High-Dimensional Econometrics and Regularized GMM
A. Belloni
Victor Chernozhukov
Denis Chetverikov
Christian B. Hansen
Kengo Kato
26
67
0
05 Jun 2018
Estimation and Inference on Nonlinear and Heterogeneous Effects
Marc Ratkovic
D. Tingley
12
11
0
16 Mar 2017
Confidence Bands for Coefficients in High Dimensional Linear Models with Error-in-variables
A. Belloni
Victor Chernozhukov
A. Kaul
31
18
0
01 Mar 2017
Testing Endogeneity with High Dimensional Covariates
Zijian Guo
Hyunseung Kang
T. Tony Cai
Dylan S. Small
27
24
0
21 Sep 2016
Locally Robust Semiparametric Estimation
Victor Chernozhukov
J. Escanciano
Hidehiko Ichimura
Whitney Newey
J. M. Robins
21
203
0
29 Jul 2016
Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk
A. Belloni
Mingli Chen
Victor Chernozhukov
17
7
0
01 Jul 2016
On cross-validated Lasso in high dimensions
Denis Chetverikov
Z. Liao
Victor Chernozhukov
24
80
0
07 May 2016
High-Dimensional Metrics in R
Victor Chernozhukov
C. Hansen
Martin Spindler
27
16
0
05 Mar 2016
High-Dimensional
L
2
L_2
L
2
Boosting: Rate of Convergence
Ye Luo
Martin Spindler
Jannis Kuck
30
32
0
29 Feb 2016
Asymptotics of selective inference
Xiaoying Tian
Jonathan E. Taylor
29
68
0
15 Jan 2015
High Dimensional Expectation-Maximization Algorithm: Statistical Optimization and Asymptotic Normality
Zhaoran Wang
Quanquan Gu
Y. Ning
Han Liu
33
53
0
30 Dec 2014
A General Framework for Robust Testing and Confidence Regions in High-Dimensional Quantile Regression
Tianqi Zhao
Mladen Kolar
Han Liu
33
43
0
30 Dec 2014
Taking Advantage of Sparsity in Multi-Task Learning
Karim Lounici
Massimiliano Pontil
Alexandre B. Tsybakov
Sara van de Geer
181
292
0
09 Mar 2009
High-dimensional generalized linear models and the lasso
Sara van de Geer
189
749
0
04 Apr 2008
1