ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1009.3958
  4. Cited By
Approximate Inference and Stochastic Optimal Control

Approximate Inference and Stochastic Optimal Control

20 September 2010
K. Rawlik
Marc Toussaint
S. Vijayakumar
ArXiv (abs)PDFHTML

Papers citing "Approximate Inference and Stochastic Optimal Control"

13 / 13 papers shown
Title
Count-Based Temperature Scheduling for Maximum Entropy Reinforcement
  Learning
Count-Based Temperature Scheduling for Maximum Entropy Reinforcement Learning
Dailin Hu
Pieter Abbeel
Roy Fox
42
2
0
28 Nov 2021
Entropy Regularized Motion Planning via Stein Variational Inference
Entropy Regularized Motion Planning via Stein Variational Inference
Alexander Lambert
Byron Boots
90
12
0
11 Jul 2021
Understanding the Origin of Information-Seeking Exploration in
  Probabilistic Objectives for Control
Understanding the Origin of Information-Seeking Exploration in Probabilistic Objectives for Control
Beren Millidge
A. Seth
Christopher L. Buckley
122
12
0
11 Mar 2021
Stein Variational Model Predictive Control
Stein Variational Model Predictive Control
Alexander Lambert
Adam Fishman
Dieter Fox
Byron Boots
F. Ramos
107
62
0
15 Nov 2020
Action and Perception as Divergence Minimization
Action and Perception as Divergence Minimization
Danijar Hafner
Pedro A. Ortega
Jimmy Ba
Thomas Parr
Karl J. Friston
N. Heess
91
53
0
03 Sep 2020
On the Relationship Between Active Inference and Control as Inference
On the Relationship Between Active Inference and Control as Inference
Beren Millidge
Alexander Tschantz
A. Seth
Christopher L. Buckley
79
63
0
23 Jun 2020
Parameterized MDPs and Reinforcement Learning Problems -- A Maximum
  Entropy Principle Based Framework
Parameterized MDPs and Reinforcement Learning Problems -- A Maximum Entropy Principle Based Framework
Amber Srivastava
S. Salapaka
75
11
0
17 Jun 2020
Deep Active Inference as Variational Policy Gradients
Deep Active Inference as Variational Policy Gradients
Beren Millidge
BDL
89
103
0
08 Jul 2019
VIREL: A Variational Inference Framework for Reinforcement Learning
VIREL: A Variational Inference Framework for Reinforcement Learning
M. Fellows
Anuj Mahajan
Tim G. J. Rudner
Shimon Whiteson
DRL
106
56
0
03 Nov 2018
Information-Theoretic Methods for Planning and Learning in Partially
  Observable Markov Decision Processes
Information-Theoretic Methods for Planning and Learning in Partially Observable Markov Decision Processes
Roy Fox
29
0
0
24 Sep 2016
Continuous Deep Q-Learning with Model-based Acceleration
Continuous Deep Q-Learning with Model-based Acceleration
S. Gu
Timothy Lillicrap
Ilya Sutskever
Sergey Levine
99
1,013
0
02 Mar 2016
Taming the Noise in Reinforcement Learning via Soft Updates
Taming the Noise in Reinforcement Learning via Soft Updates
Roy Fox
Ari Pakman
Naftali Tishby
112
341
0
28 Dec 2015
A Nonparametric Conjugate Prior Distribution for the Maximizing Argument
  of a Noisy Function
A Nonparametric Conjugate Prior Distribution for the Maximizing Argument of a Noisy Function
Pedro A. Ortega
Jordi Grau-Moya
Tim Genewein
David Balduzzi
Daniel A. Braun
111
2
0
09 Jun 2012
1