ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1006.0868
  4. Cited By
Slice sampling covariance hyperparameters of latent Gaussian models

Slice sampling covariance hyperparameters of latent Gaussian models

4 June 2010
Iain Murray
Ryan P. Adams
ArXivPDFHTML

Papers citing "Slice sampling covariance hyperparameters of latent Gaussian models"

26 / 26 papers shown
Title
Bayesian Complementary Kernelized Learning for Multidimensional
  Spatiotemporal Data
Bayesian Complementary Kernelized Learning for Multidimensional Spatiotemporal Data
Mengying Lei
A. Labbe
Lijun Sun
23
1
0
21 Aug 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Zihan Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
32
14
0
24 Feb 2022
Bayesian Optimisation for Active Monitoring of Air Pollution
Bayesian Optimisation for Active Monitoring of Air Pollution
Sigrid Passano Hellan
Christopher G. Lucas
Nigel H. Goddard
27
10
0
15 Feb 2022
A Bayesian take on option pricing with Gaussian processes
A Bayesian take on option pricing with Gaussian processes
Martin Tegnér
Stephen J. Roberts
GP
11
2
0
07 Dec 2021
Validating Gaussian Process Models with Simulation-Based Calibration
Validating Gaussian Process Models with Simulation-Based Calibration
John Mcleod
F. Simpson
22
3
0
27 Oct 2021
Bayesian data combination model with Gaussian process latent variable
  model for mixed observed variables under NMAR missingness
Bayesian data combination model with Gaussian process latent variable model for mixed observed variables under NMAR missingness
Masaki Mitsuhiro
T. Hoshino
11
1
0
01 Sep 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain
  Observations
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
24
8
0
28 Feb 2021
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free
  Optimization
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
31
16
0
15 Dec 2020
Approximate Inference for Fully Bayesian Gaussian Process Regression
Approximate Inference for Fully Bayesian Gaussian Process Regression
V. Lalchand
C. Rasmussen
GP
33
51
0
31 Dec 2019
Gaussian Processes with Errors in Variables: Theory and Computation
Gaussian Processes with Errors in Variables: Theory and Computation
Shuang Zhou
D. Pati
Tianying Wang
Yun Yang
R. Carroll
24
3
0
14 Oct 2019
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia
  Language
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
Jamie Fairbrother
Christopher Nemeth
M. Rischard
Johanni Brea
Thomas Pinder
GP
VLM
21
24
0
21 Dec 2018
A Spectral Approach to Gradient Estimation for Implicit Distributions
A Spectral Approach to Gradient Estimation for Implicit Distributions
Jiaxin Shi
Shengyang Sun
Jun Zhu
17
90
0
07 Jun 2018
BOCK : Bayesian Optimization with Cylindrical Kernels
BOCK : Bayesian Optimization with Cylindrical Kernels
Changyong Oh
E. Gavves
Max Welling
15
134
0
05 Jun 2018
Posterior Inference for Sparse Hierarchical Non-stationary Models
Posterior Inference for Sparse Hierarchical Non-stationary Models
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
27
27
0
04 Apr 2018
Gaussian Processes for Survival Analysis
Gaussian Processes for Survival Analysis
T. Fernandez
Nicolás Rivera
Yee Whye Teh
GP
24
75
0
02 Nov 2016
Auxiliary gradient-based sampling algorithms
Auxiliary gradient-based sampling algorithms
Michalis K. Titsias
O. Papaspiliopoulos
22
40
0
30 Oct 2016
Asymptotically exact inference in differentiable generative models
Asymptotically exact inference in differentiable generative models
Matthew M. Graham
Amos J. Storkey
BDL
21
33
0
25 May 2016
Enabling scalable stochastic gradient-based inference for Gaussian
  processes by employing the Unbiased LInear System SolvEr (ULISSE)
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
Maurizio Filippone
Raphael Engler
24
31
0
22 Jan 2015
Raiders of the Lost Architecture: Kernels for Bayesian Optimization in
  Conditional Parameter Spaces
Raiders of the Lost Architecture: Kernels for Bayesian Optimization in Conditional Parameter Spaces
Kevin Swersky
David Duvenaud
Jasper Snoek
Frank Hutter
Michael A. Osborne
BDL
96
79
0
14 Sep 2014
Bayesian Optimization with Unknown Constraints
Bayesian Optimization with Unknown Constraints
M. Gelbart
Jasper Snoek
Ryan P. Adams
38
441
0
22 Mar 2014
Efficient Inference of Gaussian Process Modulated Renewal Processes with
  Application to Medical Event Data
Efficient Inference of Gaussian Process Modulated Renewal Processes with Application to Medical Event Data
Thomas A. Lasko
27
45
0
19 Feb 2014
Bayesian Conditional Density Filtering
Bayesian Conditional Density Filtering
S. Qamar
Rajarshi Guhaniyogi
David B. Dunson
45
11
0
15 Jan 2014
Bayesian Modeling with Gaussian Processes using the GPstuff Toolbox
Bayesian Modeling with Gaussian Processes using the GPstuff Toolbox
J. Vanhatalo
J. Riihimaki
Jouni Hartikainen
Pasi Jylänki
Ville Tolvanen
Aki Vehtari
GP
33
46
0
25 Jun 2012
Practical Bayesian Optimization of Machine Learning Algorithms
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
75
7,845
0
13 Jun 2012
Fast MCMC sampling for Markov jump processes and continuous time
  Bayesian networks
Fast MCMC sampling for Markov jump processes and continuous time Bayesian networks
Vinayak A. Rao
Yee Whye Teh
41
47
0
14 Feb 2012
Bayesian Nonparametric Covariance Regression
Bayesian Nonparametric Covariance Regression
E. Fox
David B. Dunson
64
103
0
11 Jan 2011
1