Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1006.0868
Cited By
Slice sampling covariance hyperparameters of latent Gaussian models
4 June 2010
Iain Murray
Ryan P. Adams
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Slice sampling covariance hyperparameters of latent Gaussian models"
26 / 26 papers shown
Title
Bayesian Complementary Kernelized Learning for Multidimensional Spatiotemporal Data
Mengying Lei
A. Labbe
Lijun Sun
23
1
0
21 Aug 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
ziqi wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
32
14
0
24 Feb 2022
Bayesian Optimisation for Active Monitoring of Air Pollution
Sigrid Passano Hellan
Christopher G. Lucas
Nigel H. Goddard
27
10
0
15 Feb 2022
A Bayesian take on option pricing with Gaussian processes
Martin Tegnér
Stephen J. Roberts
GP
6
2
0
07 Dec 2021
Validating Gaussian Process Models with Simulation-Based Calibration
John Mcleod
F. Simpson
22
3
0
27 Oct 2021
Bayesian data combination model with Gaussian process latent variable model for mixed observed variables under NMAR missingness
Masaki Mitsuhiro
T. Hoshino
11
1
0
01 Sep 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
21
8
0
28 Feb 2021
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
28
16
0
15 Dec 2020
Approximate Inference for Fully Bayesian Gaussian Process Regression
V. Lalchand
C. Rasmussen
GP
30
51
0
31 Dec 2019
Gaussian Processes with Errors in Variables: Theory and Computation
Shuang Zhou
D. Pati
Tianying Wang
Yun Yang
R. Carroll
21
3
0
14 Oct 2019
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
Jamie Fairbrother
Christopher Nemeth
M. Rischard
Johanni Brea
Thomas Pinder
GP
VLM
10
24
0
21 Dec 2018
A Spectral Approach to Gradient Estimation for Implicit Distributions
Jiaxin Shi
Shengyang Sun
Jun Zhu
17
90
0
07 Jun 2018
BOCK : Bayesian Optimization with Cylindrical Kernels
Changyong Oh
E. Gavves
Max Welling
13
134
0
05 Jun 2018
Posterior Inference for Sparse Hierarchical Non-stationary Models
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
27
27
0
04 Apr 2018
Gaussian Processes for Survival Analysis
T. Fernandez
Nicolás Rivera
Yee Whye Teh
GP
22
75
0
02 Nov 2016
Auxiliary gradient-based sampling algorithms
Michalis K. Titsias
O. Papaspiliopoulos
22
40
0
30 Oct 2016
Asymptotically exact inference in differentiable generative models
Matthew M. Graham
Amos J. Storkey
BDL
21
33
0
25 May 2016
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
Maurizio Filippone
Raphael Engler
24
31
0
22 Jan 2015
Raiders of the Lost Architecture: Kernels for Bayesian Optimization in Conditional Parameter Spaces
Kevin Swersky
David Duvenaud
Jasper Snoek
Frank Hutter
Michael A. Osborne
BDL
94
79
0
14 Sep 2014
Bayesian Optimization with Unknown Constraints
M. Gelbart
Jasper Snoek
Ryan P. Adams
36
441
0
22 Mar 2014
Efficient Inference of Gaussian Process Modulated Renewal Processes with Application to Medical Event Data
Thomas A. Lasko
25
45
0
19 Feb 2014
Bayesian Conditional Density Filtering
S. Qamar
Rajarshi Guhaniyogi
David B. Dunson
45
11
0
15 Jan 2014
Bayesian Modeling with Gaussian Processes using the GPstuff Toolbox
J. Vanhatalo
J. Riihimaki
Jouni Hartikainen
Pasi Jylänki
Ville Tolvanen
Aki Vehtari
GP
33
46
0
25 Jun 2012
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
73
7,840
0
13 Jun 2012
Fast MCMC sampling for Markov jump processes and continuous time Bayesian networks
Vinayak A. Rao
Yee Whye Teh
36
47
0
14 Feb 2012
Bayesian Nonparametric Covariance Regression
E. Fox
David B. Dunson
62
103
0
11 Jan 2011
1