ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1003.3829
  4. Cited By
Bayesian Nonparametric Inference of Switching Linear Dynamical Systems

Bayesian Nonparametric Inference of Switching Linear Dynamical Systems

19 March 2010
E. Fox
Erik B. Sudderth
Michael I. Jordan
A. Willsky
ArXivPDFHTML

Papers citing "Bayesian Nonparametric Inference of Switching Linear Dynamical Systems"

46 / 46 papers shown
Title
The Recurrent Sticky Hierarchical Dirichlet Process Hidden Markov Model
The Recurrent Sticky Hierarchical Dirichlet Process Hidden Markov Model
Mikołaj Słupiński
Piotr Lipiński
24
0
0
06 Nov 2024
Bayesian Vector AutoRegression with Factorised Granger-Causal Graphs
Bayesian Vector AutoRegression with Factorised Granger-Causal Graphs
He Zhao
V. Kitsios
Terry O'Kane
Edwin V. Bonilla
CML
24
1
0
06 Feb 2024
Distributed Continual Learning with CoCoA in High-dimensional Linear
  Regression
Distributed Continual Learning with CoCoA in High-dimensional Linear Regression
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
OOD
41
1
0
04 Dec 2023
Learning Compliant Stiffness by Impedance Control-Aware Task
  Segmentation and Multi-objective Bayesian Optimization with Priors
Learning Compliant Stiffness by Impedance Control-Aware Task Segmentation and Multi-objective Bayesian Optimization with Priors
Masashi Okada
Mayumi Komatsu
Ryogo Okumura
T. Taniguchi
36
4
0
28 Jul 2023
Bayesian Non-linear Latent Variable Modeling via Random Fourier Features
Bayesian Non-linear Latent Variable Modeling via Random Fourier Features
M. Zhang
Gregory W. Gundersen
Barbara Engelhardt
BDL
13
2
0
14 Jun 2023
Continual Learning with Distributed Optimization: Does CoCoA Forget?
Continual Learning with Distributed Optimization: Does CoCoA Forget?
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
CLL
OOD
24
1
0
30 Nov 2022
Reinforcement Learning in Presence of Discrete Markovian Context
  Evolution
Reinforcement Learning in Presence of Discrete Markovian Context Evolution
Hang Ren
Aivar Sootla
Taher Jafferjee
Junxiao Shen
Jun Wang
Haitham Bou-Ammar
BDL
OffRL
35
9
0
14 Feb 2022
Bayesian Nonparametric View to Spawning
Bayesian Nonparametric View to Spawning
Bahman Moraffah
22
0
0
03 Dec 2021
Global Convergence Using Policy Gradient Methods for Model-free
  Markovian Jump Linear Quadratic Control
Global Convergence Using Policy Gradient Methods for Model-free Markovian Jump Linear Quadratic Control
Santanu Rathod
Manoj Bhadu
A. De
19
8
0
30 Nov 2021
Granger Causality: A Review and Recent Advances
Granger Causality: A Review and Recent Advances
Ali Shojaie
E. Fox
CML
AI4TS
32
259
0
05 May 2021
Dynamical System Segmentation for Information Measures in Motion
Dynamical System Segmentation for Information Measures in Motion
Thomas A. Berrueta
Ana Pervan
Kathleen Fitzsimons
Todd D. Murphey
17
7
0
09 Dec 2020
Use of Bayesian Nonparametric methods for Estimating the Measurements in
  High Clutter
Use of Bayesian Nonparametric methods for Estimating the Measurements in High Clutter
Bahman Moraffah
C. Richmond
Raha Moraffah
A. Papandreou-Suppappola
14
2
0
30 Nov 2020
Policy Optimization for Markovian Jump Linear Quadratic Control:
  Gradient-Based Methods and Global Convergence
Policy Optimization for Markovian Jump Linear Quadratic Control: Gradient-Based Methods and Global Convergence
Joao Paulo Jansch-Porto
Bin Hu
Geir Dullerud
19
8
0
24 Nov 2020
Dynamical Variational Autoencoders: A Comprehensive Review
Dynamical Variational Autoencoders: A Comprehensive Review
Laurent Girin
Simon Leglaive
Xiaoyu Bie
Julien Diard
Thomas Hueber
Xavier Alameda-Pineda
BDL
23
210
0
28 Aug 2020
Policy Learning of MDPs with Mixed Continuous/Discrete Variables: A Case
  Study on Model-Free Control of Markovian Jump Systems
Policy Learning of MDPs with Mixed Continuous/Discrete Variables: A Case Study on Model-Free Control of Markovian Jump Systems
Joao Paulo Jansch-Porto
Bin Hu
Geir Dullerud
17
16
0
04 Jun 2020
Variational Inference and Learning of Piecewise-linear Dynamical Systems
Variational Inference and Learning of Piecewise-linear Dynamical Systems
Xavier Alameda-Pineda
Vincent Drouard
Radu Horaud
27
12
0
02 Jun 2020
Bayesian nonparametric modeling for predicting dynamic dependencies in
  multiple object tracking
Bayesian nonparametric modeling for predicting dynamic dependencies in multiple object tracking
Bahman Moraffah
Antonia Papndreou-Suppopola
11
8
0
22 Apr 2020
Convergence Guarantees of Policy Optimization Methods for Markovian Jump
  Linear Systems
Convergence Guarantees of Policy Optimization Methods for Markovian Jump Linear Systems
Joao Paulo Jansch-Porto
Bin Hu
Geir Dullerud
25
35
0
10 Feb 2020
Inference for multiple object tracking: A Bayesian nonparametric
  approach
Inference for multiple object tracking: A Bayesian nonparametric approach
Bahman Moraffah
VOT
19
11
0
16 Sep 2019
The Greedy Dirichlet Process Filter - An Online Clustering Multi-Target
  Tracker
The Greedy Dirichlet Process Filter - An Online Clustering Multi-Target Tracker
Benjamin Naujoks
P. Burger
Hans-Joachim Wünsche
11
8
0
14 Nov 2018
Robust Particle Filtering via Bayesian Nonparametric Outlier Modeling
Robust Particle Filtering via Bayesian Nonparametric Outlier Modeling
B. Liu
11
3
0
22 Oct 2018
Stochastic Gradient MCMC for State Space Models
Stochastic Gradient MCMC for State Space Models
Christopher Aicher
Yian Ma
N. Foti
E. Fox
33
21
0
22 Oct 2018
Online Robust Policy Learning in the Presence of Unknown Adversaries
Online Robust Policy Learning in the Presence of Unknown Adversaries
Aaron J. Havens
Zhanhong Jiang
S. Sarkar
AAML
16
43
0
16 Jul 2018
Probabilistic Trajectory Segmentation by Means of Hierarchical Dirichlet
  Process Switching Linear Dynamical Systems
Probabilistic Trajectory Segmentation by Means of Hierarchical Dirichlet Process Switching Linear Dynamical Systems
Maximilian Sieb
M. Schultheis
Sebastian Szelag
Rudolf Lioutikov
Jan Peters
25
0
0
29 May 2018
A Tempt to Unify Heterogeneous Driving Databases using Traffic
  Primitives
A Tempt to Unify Heterogeneous Driving Databases using Traffic Primitives
Jiacheng Zhu
Wenshuo Wang
Ding Zhao
AI4TS
30
5
0
13 May 2018
Segment Parameter Labelling in MCMC Mean-Shift Change Detection
Segment Parameter Labelling in MCMC Mean-Shift Change Detection
Alireza Ahrabian
Shirin Enshaeifar
C. C. Took
Payam Barnaghi
12
1
0
26 Oct 2017
Extracting Traffic Primitives Directly from Naturalistically Logged Data
  for Self-Driving Applications
Extracting Traffic Primitives Directly from Naturalistically Logged Data for Self-Driving Applications
Wenshuo Wang
Ding Zhao
AI4TS
20
74
0
11 Sep 2017
Driving Style Analysis Using Primitive Driving Patterns With Bayesian
  Nonparametric Approaches
Driving Style Analysis Using Primitive Driving Patterns With Bayesian Nonparametric Approaches
Wenshuo Wang
Junqiang Xi
Ding Zhao
14
134
0
16 Aug 2017
Stochastic Sequential Neural Networks with Structured Inference
Stochastic Sequential Neural Networks with Structured Inference
Hao Liu
Haoli Bai
Lirong He
Zenglin Xu
BDL
23
3
0
24 May 2017
A Hidden Absorbing Semi-Markov Model for Informatively Censored Temporal
  Data: Learning and Inference
A Hidden Absorbing Semi-Markov Model for Informatively Censored Temporal Data: Learning and Inference
Ahmed Alaa
M. Schaar
20
32
0
18 Dec 2016
A Semi-Markov Switching Linear Gaussian Model for Censored Physiological
  Data
A Semi-Markov Switching Linear Gaussian Model for Censored Physiological Data
Ahmed Alaa
Jinsung Yoon
Scott Hu
M. Schaar
16
3
0
16 Nov 2016
Composing graphical models with neural networks for structured
  representations and fast inference
Composing graphical models with neural networks for structured representations and fast inference
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
BDL
OCL
22
482
0
20 Mar 2016
A Latent-Variable Lattice Model
A Latent-Variable Lattice Model
Rajasekaran Masatran
11
0
0
23 Dec 2015
Probabilistic Segmentation via Total Variation Regularization
Probabilistic Segmentation via Total Variation Regularization
Matt Wytock
J. Zico Kolter
14
0
0
16 Nov 2015
Infinite Author Topic Model based on Mixed Gamma-Negative Binomial
  Process
Infinite Author Topic Model based on Mixed Gamma-Negative Binomial Process
Junyu Xuan
Jie Lu
Guangquan Zhang
R. Xu
Xiangfeng Luo
19
13
0
30 Mar 2015
An Adaptive Online HDP-HMM for Segmentation and Classification of
  Sequential Data
An Adaptive Online HDP-HMM for Segmentation and Classification of Sequential Data
Ava Bargi
R. Xu
Massimo Piccardi
24
3
0
10 Mar 2015
Identification of jump Markov linear models using particle filters
Identification of jump Markov linear models using particle filters
Andreas Svensson
Thomas B. Schon
Fredrik Lindsten
19
28
0
25 Sep 2014
Modeling the Complex Dynamics and Changing Correlations of Epileptic
  Events
Modeling the Complex Dynamics and Changing Correlations of Epileptic Events
Drausin Wulsin
E. Fox
B. Litt
48
21
0
27 Feb 2014
Mixed Membership Models for Time Series
Mixed Membership Models for Time Series
Emily B. Fox
Michael I. Jordan
AI4TS
31
7
0
13 Sep 2013
Joint modeling of multiple time series via the beta process with
  application to motion capture segmentation
Joint modeling of multiple time series via the beta process with application to motion capture segmentation
E. Fox
M. C. Hughes
Erik B. Sudderth
Michael I. Jordan
28
96
0
22 Aug 2013
Dynamic Infinite Mixed-Membership Stochastic Blockmodel
Dynamic Infinite Mixed-Membership Stochastic Blockmodel
Xuhui Fan
LongBing Cao
R. Xu
52
27
0
13 Jun 2013
Learning Human Activities and Object Affordances from RGB-D Videos
Learning Human Activities and Object Affordances from RGB-D Videos
H. Koppula
Rudhir Gupta
Ashutosh Saxena
96
727
0
04 Oct 2012
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
83
2,599
0
29 Jun 2012
Statistical inference for dynamical systems: a review
Statistical inference for dynamical systems: a review
K. Mcgoff
S. Mukherjee
Natesh S. Pillai
AI4CE
49
47
0
27 Apr 2012
Joint Modeling of Multiple Related Time Series via the Beta Process
Joint Modeling of Multiple Related Time Series via the Beta Process
E. Fox
Erik B. Sudderth
Michael I. Jordan
A. Willsky
38
43
0
17 Nov 2011
Sparsistent Estimation of Time-Varying Discrete Markov Random Fields
Sparsistent Estimation of Time-Varying Discrete Markov Random Fields
Mladen Kolar
Eric Xing
104
23
0
14 Jul 2009
1