ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.09291
11
3

Robust Particle Filtering via Bayesian Nonparametric Outlier Modeling

22 October 2018
B. Liu
ArXivPDFHTML
Abstract

This paper is concerned with the online estimation of a nonlinear dynamic system from a series of noisy measurements. The focus is on cases wherein outliers are present in-between normal noises. We assume that the outliers follow an unknown generating mechanism which deviates from that of normal noises, and then model the outliers using a Bayesian nonparametric model called Dirichlet process mixture (DPM). A sequential particle-based algorithm is derived for posterior inference for the outlier model as well as the state of the system to be estimated. The resulting algorithm is termed DPM based robust PF (DPM-RPF). The nonparametric feature makes this algorithm allow the data to "speak for itself" to determine the complexity and structure of the outlier model. Simulation results show that it performs remarkably better than two state-of-the-art methods especially when outliers appear frequently along time.

View on arXiv
Comments on this paper