Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0912.3995
Cited By
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
21 December 2009
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design"
50 / 617 papers shown
Title
Near-linear Time Gaussian Process Optimization with Adaptive Batching and Resparsification
Daniele Calandriello
Luigi Carratino
A. Lazaric
Michal Valko
Lorenzo Rosasco
39
19
0
23 Feb 2020
Weakly-supervised Multi-output Regression via Correlated Gaussian Processes
Seokhyun Chung
Raed Al Kontar
Zhenke Wu
21
4
0
19 Feb 2020
Reward Design for Driver Repositioning Using Multi-Agent Reinforcement Learning
Zhenyu Shou
Xuan Di
27
57
0
17 Feb 2020
Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis
Jung Yeon Park
K. T. Carr
Stephan Zhang
Yisong Yue
Rose Yu
35
14
0
13 Feb 2020
Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization
Lukas P. Frohlich
Edgar D. Klenske
Julia Vinogradska
Christian Daniel
Melanie Zeilinger
47
36
0
07 Feb 2020
ε
ε
ε
-shotgun:
ε
ε
ε
-greedy Batch Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
Alma A. M. Rahat
29
15
0
05 Feb 2020
Effective Diversity in Population Based Reinforcement Learning
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
22
158
0
03 Feb 2020
Efficient and Robust Algorithms for Adversarial Linear Contextual Bandits
Gergely Neu
Julia Olkhovskaya
16
44
0
01 Feb 2020
Tight Regret Bounds for Noisy Optimization of a Brownian Motion
Zexin Wang
Vincent Y. F. Tan
Jonathan Scarlett
27
5
0
25 Jan 2020
Tuneful: An Online Significance-Aware Configuration Tuner for Big Data Analytics
Ayat Fekry
Lucian Carata
Thomas Pasquier
Andrew Rice
A. Hopper
42
16
0
22 Jan 2020
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization Approach for Deep Neural Networks
Md Shahriar Iqbal
Jianhai Su
Lars Kotthoff
Pooyan Jamshidi
25
3
0
18 Jan 2020
Bayesian Quantile and Expectile Optimisation
Victor Picheny
Henry B. Moss
Léonard Torossian
N. Durrande
19
21
0
12 Jan 2020
Stepwise Model Selection for Sequence Prediction via Deep Kernel Learning
Yao Zhang
Daniel Jarrett
M. Schaar
11
9
0
12 Jan 2020
On Thompson Sampling for Smoother-than-Lipschitz Bandits
James A. Grant
David S. Leslie
20
7
0
08 Jan 2020
Ordinal Bayesian Optimisation
Victor Picheny
Sattar Vakili
A. Artemev
20
8
0
05 Dec 2019
Safety Guarantees for Planning Based on Iterative Gaussian Processes
Kyriakos Polymenakos
Luca Laurenti
A. Patané
Jan-Peter Calliess
L. Cardelli
Marta Z. Kwiatkowska
Alessandro Abate
Stephen J. Roberts
13
10
0
29 Nov 2019
Bayesian Optimization for Categorical and Category-Specific Continuous Inputs
Dang Nguyen
Sunil R. Gupta
Santu Rana
A. Shilton
Svetha Venkatesh
16
50
0
28 Nov 2019
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
27
14
0
27 Nov 2019
Actively Learning Gaussian Process Dynamics
Mona Buisson-Fenet
Friedrich Solowjow
Sebastian Trimpe
GP
30
64
0
22 Nov 2019
Information-Theoretic Confidence Bounds for Reinforcement Learning
Xiuyuan Lu
Benjamin Van Roy
11
60
0
21 Nov 2019
A Simple Heuristic for Bayesian Optimization with A Low Budget
Masahiro Nomura
Kenshi Abe
34
1
0
18 Nov 2019
AI-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH case
E. Cisbani
A. Dotto
C. Fanelli
Michael Williams
M. Alfred
...
R. Towell
Junqi Xie
Zhiwen Zhao
B. Zihlmann
C. Zorn
22
29
0
13 Nov 2019
Non-parametric Probabilistic Load Flow using Gaussian Process Learning
Parikshit Pareek
Chuan Wang
H. Nguyen
20
5
0
08 Nov 2019
A Programmable Approach to Neural Network Compression
Vinu Joseph
Saurav Muralidharan
Animesh Garg
M. Garland
Ganesh Gopalakrishnan
33
10
0
06 Nov 2019
Designing over uncertain outcomes with stochastic sampling Bayesian optimization
Peter D. Tonner
D. Samarov
A. Kusne
9
0
0
05 Nov 2019
Online tuning and light source control using a physics-informed Gaussian process Adi
A. Hanuka
J. Duris
J. Shtalenkova
Dylan Kennedy
A. Edelen
Daniel Ratner
Xiaobiao Huang
6
20
0
04 Nov 2019
On Batch Bayesian Optimization
Sayak Ray Chowdhury
Aditya Gopalan
27
9
0
04 Nov 2019
Zeroth Order Non-convex optimization with Dueling-Choice Bandits
Yichong Xu
Aparna R. Joshi
Aarti Singh
A. Dubrawski
26
13
0
03 Nov 2019
Recovering Bandits
Ciara Pike-Burke
Steffen Grunewalder
15
40
0
31 Oct 2019
Bayesian Optimization with Unknown Search Space
Huong Ha
Santu Rana
Sunil R. Gupta
Thanh Nguyen
Hung The Tran
Svetha Venkatesh
25
22
0
29 Oct 2019
Bayesian Experimental Design for Finding Reliable Level Set under Input Uncertainty
S. Iwazaki
Yu Inatsu
Ichiro Takeuchi
28
15
0
26 Oct 2019
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search
Colin White
Willie Neiswanger
Yash Savani
BDL
53
314
0
25 Oct 2019
Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
19
29
0
23 Oct 2019
Bayesian Optimization Allowing for Common Random Numbers
Michael Pearce
Matthias Poloczek
Juergen Branke
BDL
19
23
0
21 Oct 2019
Parameter Optimization and Learning in a Spiking Neural Network for UAV Obstacle Avoidance targeting Neuromorphic Processors
Llewyn Salt
David Howard
Giacomo Indiveri
Yulia Sandamirskaya
12
43
0
17 Oct 2019
Constrained Bayesian Optimization with Max-Value Entropy Search
Valerio Perrone
I. Shcherbatyi
Rodolphe Jenatton
Cédric Archambeau
Matthias Seeger
13
41
0
15 Oct 2019
Neural Collision Clearance Estimator for Batched Motion Planning
J. Kew
Brian Ichter
Maryam Bandari
T. Lee
Aleksandra Faust
3DV
11
11
0
14 Oct 2019
Bayesian Optimization using Pseudo-Points
Chao Qian
Hang Xiong
Ke Xue
28
15
0
12 Oct 2019
Information-Guided Robotic Maximum Seek-and-Sample in Partially Observable Continuous Environments
Genevieve Flaspohler
Victoria L. Preston
A. Michel
Yogesh A. Girdhar
Nicholas Roy
34
45
0
26 Sep 2019
Bayesian Optimization for Iterative Learning
Vu-Linh Nguyen
Sebastian Schulze
Michael A. Osborne
BDL
16
32
0
20 Sep 2019
Bayesian Optimization under Heavy-tailed Payoffs
Sayak Ray Chowdhury
Aditya Gopalan
24
25
0
16 Sep 2019
Closed-loop Model Selection for Kernel-based Models using Bayesian Optimization
Thomas Beckers
Somil Bansal
Claire Tomlin
Sandra Hirche
16
6
0
12 Sep 2019
Surrogate-based Optimization using Mutual Information for Computer Experiments (optim-MICE)
Theodoros Mathikolonis
S. Guillas
16
3
0
10 Sep 2019
Student Performance Prediction with Optimum Multilabel Ensemble Model
Ephrem Admasu Yekun
Abrahaley Teklay
20
8
0
06 Sep 2019
Learning a Spatial Field in Minimum Time with a Team of Robots
Varun Suryan
Pratap Tokekar
9
26
0
04 Sep 2019
Adaptive Configuration Oracle for Online Portfolio Selection Methods
Favour Nyikosa
Michael A. Osborne
Stephen J. Roberts
9
1
0
22 Aug 2019
How to gamble with non-stationary
X
\mathcal{X}
X
-armed bandits and have no regrets
V. Avanesov
6
0
0
20 Aug 2019
Linear Stochastic Bandits Under Safety Constraints
Sanae Amani
M. Alizadeh
Christos Thrampoulidis
36
117
0
16 Aug 2019
PHYRE: A New Benchmark for Physical Reasoning
A. Bakhtin
Laurens van der Maaten
Justin Johnson
Laura Gustafson
Ross B. Girshick
LRM
24
122
0
15 Aug 2019
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
Ksenia Korovina
Sailun Xu
Kirthevasan Kandasamy
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
42
122
0
05 Aug 2019
Previous
1
2
3
...
10
11
12
13
8
9
Next