Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0912.3995
Cited By
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
21 December 2009
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design"
50 / 617 papers shown
Title
Gamifying optimization: a Wasserstein distance-based analysis of human search
Antonio Candelieri
Andrea Ponti
Francesco Archetti
23
0
0
12 Dec 2021
Structure-Preserving Learning Using Gaussian Processes and Variational Integrators
Jan Brüdigam
Martin Schuck
A. Capone
Stefan Sosnowski
Sandra Hirche
19
4
0
10 Dec 2021
Indexed Minimum Empirical Divergence for Unimodal Bandits
Hassan Saber
Pierre Ménard
Odalric-Ambrym Maillard
17
3
0
02 Dec 2021
Contextual Combinatorial Multi-output GP Bandits with Group Constraints
Sepehr Elahi
Baran Atalar
Sevda Öğüt
Cem Tekin
30
2
0
29 Nov 2021
Towards Autonomous Driving of Personal Mobility with Small and Noisy Dataset using Tsallis-statistics-based Behavioral Cloning
Taisuke Kobayashi
Takahito Enomoto
29
3
0
29 Nov 2021
Transfer Learning with Gaussian Processes for Bayesian Optimization
Petru Tighineanu
Kathrin Skubch
P. Baireuther
Attila Reiss
Felix Berkenkamp
Julia Vinogradska
22
32
0
22 Nov 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
31
3
0
19 Nov 2021
Bayesian Optimization for Cascade-type Multi-stage Processes
Shunya Kusakawa
Shion Takeno
Yu Inatsu
Kentaro Kutsukake
S. Iwazaki
Takashi Nakano
T. Ujihara
Masayuki Karasuyama
Ichiro Takeuchi
25
18
0
16 Nov 2021
Stochastic Gradient Line Bayesian Optimization for Efficient Noise-Robust Optimization of Parameterized Quantum Circuits
Shiro Tamiya
H. Yamasaki
26
24
0
15 Nov 2021
Safe Real-Time Optimization using Multi-Fidelity Gaussian Processes
Panagiotis Petsagkourakis
Benoît Chachuat
Ehecatl Antonio del Rio Chanona
27
7
0
10 Nov 2021
Practical, Provably-Correct Interactive Learning in the Realizable Setting: The Power of True Believers
Julian Katz-Samuels
Blake Mason
Kevin G. Jamieson
R. Nowak
11
0
0
09 Nov 2021
Risk-averse Heteroscedastic Bayesian Optimization
A. Makarova
Ilnura N. Usmanova
Ilija Bogunovic
Andreas Krause
35
35
0
05 Nov 2021
Adaptive Low-Pass Filtering using Sliding Window Gaussian Processes
Alejandro Jose Ordóñez Conejo
Armin Lederer
Sandra Hirche
15
4
0
05 Nov 2021
Contextual Bayesian optimization with binary outputs
T. Fauvel
M. Chalk
40
3
0
05 Nov 2021
Overcoming Digital Gravity when using AI in Public Health Decisions
S. Remy
Aisha Walcott-Bryant
Nelson Bore
C. Wachira
J. Kuehnert
AI4CE
8
1
0
05 Nov 2021
DOCKSTRING: easy molecular docking yields better benchmarks for ligand design
Miguel García-Ortegón
G. Simm
Austin Tripp
José Miguel Hernández-Lobato
A. Bender
S. Bacallado
42
75
0
29 Oct 2021
Differentially Private Federated Bayesian Optimization with Distributed Exploration
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
26
41
0
27 Oct 2021
Bayesian Optimization and Deep Learning forsteering wheel angle prediction
Alessandro Riboni
Nicolò Ghioldi
Antonio Candelieri
M. Borrotti
LLMSV
27
10
0
22 Oct 2021
Sensing Cox Processes via Posterior Sampling and Positive Bases
Mojmír Mutný
Andreas Krause
13
5
0
21 Oct 2021
On Reward-Free RL with Kernel and Neural Function Approximations: Single-Agent MDP and Markov Game
Shuang Qiu
Jieping Ye
Zhaoran Wang
Zhuoran Yang
OffRL
47
23
0
19 Oct 2021
Set-based State Estimation with Probabilistic Consistency Guarantee under Epistemic Uncertainty
Shen Li
Theodoros Stouraitis
Michael Gienger
S. Vijayakumar
J. Shah
14
8
0
18 Oct 2021
An active learning approach for improving the performance of equilibrium based chemical simulations
M. Savino
Céline Lévy-Leduc
M. Leconte
B. Cochepin
20
5
0
15 Oct 2021
Gaussian Process Bandit Optimization with Few Batches
Zihan Li
Jonathan Scarlett
GP
135
47
0
15 Oct 2021
Contextual Combinatorial Bandits with Changing Action Sets via Gaussian Processes
Andi Nika
Sepehr Elahi
Cem Tekin
30
2
0
05 Oct 2021
Δ
Δ
Δ
-UQ: Accurate Uncertainty Quantification via Anchor Marginalization
Rushil Anirudh
Jayaraman J. Thiagarajan
38
1
0
05 Oct 2021
Machine Learning with Knowledge Constraints for Process Optimization of Open-Air Perovskite Solar Cell Manufacturing
Zhe Liu
Nicholas Rolston
Austin C. Flick
T. Colburn
Zekun Ren
R. Dauskardt
Tonio Buonassisi
35
116
0
01 Oct 2021
Genealogical Population-Based Training for Hyperparameter Optimization
Antoine Scardigli
P. Fournier
Matteo Vilucchio
D. Naccache
GP
22
0
0
30 Sep 2021
Pre-trained Gaussian processes for Bayesian optimization
Zehao Wang
George E. Dahl
Kevin Swersky
Chansoo Lee
Zachary Nado
Justin Gilmer
Jasper Snoek
Zoubin Ghahramani
70
40
0
16 Sep 2021
Batched Data-Driven Evolutionary Multi-Objective Optimization Based on Manifold Interpolation
Ke Li
Renzhi Chen
32
27
0
12 Sep 2021
Active Multi-Object Exploration and Recognition via Tactile Whiskers
Chenxi Xiao
Shujia Xu
Wenzhuo Wu
J. Wachs
36
12
0
08 Sep 2021
Safety-Critical Learning of Robot Control with Temporal Logic Specifications
Mingyu Cai
C. Vasile
40
4
0
07 Sep 2021
Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for Safety-Critical Applications
A. Capone
Armin Lederer
Sandra Hirche
32
18
0
06 Sep 2021
Select Wisely and Explain: Active Learning and Probabilistic Local Post-hoc Explainability
Aditya Saini
Ranjitha Prasad
BDL
11
13
0
16 Aug 2021
Scalable3-BO: Big Data meets HPC - A scalable asynchronous parallel high-dimensional Bayesian optimization framework on supercomputers
Anh Tran
32
0
0
12 Aug 2021
Model-Based Opponent Modeling
Xiaopeng Yu
Jiechuan Jiang
Wanpeng Zhang
Haobin Jiang
Zongqing Lu
OffRL
41
28
0
04 Aug 2021
Active Learning in Gaussian Process State Space Model
H. Yu
Dingling Yao
Christoph Zimmer
Marc Toussaint
D. Nguyen-Tuong
GP
22
4
0
30 Jul 2021
Trusted-Maximizers Entropy Search for Efficient Bayesian Optimization
Q. Nguyen
Zhaoxuan Wu
K. H. Low
Patrick Jaillet
49
12
0
30 Jul 2021
Physics-constrained Deep Learning for Robust Inverse ECG Modeling
Jianxin Xie
B. Yao
30
22
0
26 Jul 2021
High-Dimensional Simulation Optimization via Brownian Fields and Sparse Grids
Liang Ding
Rui Tuo
Xiaowei Zhang
27
3
0
19 Jul 2021
Contextual Games: Multi-Agent Learning with Side Information
Pier Giuseppe Sessa
Ilija Bogunovic
Andreas Krause
Maryam Kamgarpour
54
21
0
13 Jul 2021
Efficient and Reactive Planning for High Speed Robot Air Hockey
Puze Liu
Davide Tateo
Haitham Bou-Ammar
Jan Peters
41
18
0
13 Jul 2021
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
19
18
0
08 Jul 2021
Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian Modeling
Kai Wang
Bryan Wilder
S. Suen
B. Dilkina
Milind Tambe
195
0
0
07 Jul 2021
A Short Note on the Relationship of Information Gain and Eluder Dimension
Kaixuan Huang
Sham Kakade
Jason D. Lee
Qi Lei
8
8
0
06 Jul 2021
Weighted Gaussian Process Bandits for Non-stationary Environments
Yuntian Deng
Xingyu Zhou
Baekjin Kim
Ambuj Tewari
Abhishek Gupta
Ness B. Shroff
19
23
0
06 Jul 2021
A Map of Bandits for E-commerce
Yi Liu
Lihong Li
16
10
0
01 Jul 2021
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
24
26
0
29 Jun 2021
An Efficient Batch Constrained Bayesian Optimization Approach for Analog Circuit Synthesis via Multi-objective Acquisition Ensemble
Shuhan Zhang
Fan Yang
Changhao Yan
Dian Zhou
Xuan Zeng
31
65
0
28 Jun 2021
Machine Learning based optimization for interval uncertainty propagation
Alice Cicirello
Filippo Giunta
18
10
0
21 Jun 2021
Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive Networks
Shibo Li
Robert M. Kirby
Shandian Zhe
35
13
0
18 Jun 2021
Previous
1
2
3
4
5
6
...
11
12
13
Next