ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0912.3995
  4. Cited By
Gaussian Process Optimization in the Bandit Setting: No Regret and
  Experimental Design

Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design

21 December 2009
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
ArXivPDFHTML

Papers citing "Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design"

50 / 617 papers shown
Title
Gamifying optimization: a Wasserstein distance-based analysis of human
  search
Gamifying optimization: a Wasserstein distance-based analysis of human search
Antonio Candelieri
Andrea Ponti
Francesco Archetti
23
0
0
12 Dec 2021
Structure-Preserving Learning Using Gaussian Processes and Variational
  Integrators
Structure-Preserving Learning Using Gaussian Processes and Variational Integrators
Jan Brüdigam
Martin Schuck
A. Capone
Stefan Sosnowski
Sandra Hirche
19
4
0
10 Dec 2021
Indexed Minimum Empirical Divergence for Unimodal Bandits
Indexed Minimum Empirical Divergence for Unimodal Bandits
Hassan Saber
Pierre Ménard
Odalric-Ambrym Maillard
17
3
0
02 Dec 2021
Contextual Combinatorial Multi-output GP Bandits with Group Constraints
Contextual Combinatorial Multi-output GP Bandits with Group Constraints
Sepehr Elahi
Baran Atalar
Sevda Öğüt
Cem Tekin
30
2
0
29 Nov 2021
Towards Autonomous Driving of Personal Mobility with Small and Noisy
  Dataset using Tsallis-statistics-based Behavioral Cloning
Towards Autonomous Driving of Personal Mobility with Small and Noisy Dataset using Tsallis-statistics-based Behavioral Cloning
Taisuke Kobayashi
Takahito Enomoto
29
3
0
29 Nov 2021
Transfer Learning with Gaussian Processes for Bayesian Optimization
Transfer Learning with Gaussian Processes for Bayesian Optimization
Petru Tighineanu
Kathrin Skubch
P. Baireuther
Attila Reiss
Felix Berkenkamp
Julia Vinogradska
22
32
0
22 Nov 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent:
  Convergence Guarantees and Empirical Benefits
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
31
3
0
19 Nov 2021
Bayesian Optimization for Cascade-type Multi-stage Processes
Bayesian Optimization for Cascade-type Multi-stage Processes
Shunya Kusakawa
Shion Takeno
Yu Inatsu
Kentaro Kutsukake
S. Iwazaki
Takashi Nakano
T. Ujihara
Masayuki Karasuyama
Ichiro Takeuchi
25
18
0
16 Nov 2021
Stochastic Gradient Line Bayesian Optimization for Efficient
  Noise-Robust Optimization of Parameterized Quantum Circuits
Stochastic Gradient Line Bayesian Optimization for Efficient Noise-Robust Optimization of Parameterized Quantum Circuits
Shiro Tamiya
H. Yamasaki
26
24
0
15 Nov 2021
Safe Real-Time Optimization using Multi-Fidelity Gaussian Processes
Safe Real-Time Optimization using Multi-Fidelity Gaussian Processes
Panagiotis Petsagkourakis
Benoît Chachuat
Ehecatl Antonio del Rio Chanona
27
7
0
10 Nov 2021
Practical, Provably-Correct Interactive Learning in the Realizable
  Setting: The Power of True Believers
Practical, Provably-Correct Interactive Learning in the Realizable Setting: The Power of True Believers
Julian Katz-Samuels
Blake Mason
Kevin G. Jamieson
R. Nowak
11
0
0
09 Nov 2021
Risk-averse Heteroscedastic Bayesian Optimization
Risk-averse Heteroscedastic Bayesian Optimization
A. Makarova
Ilnura N. Usmanova
Ilija Bogunovic
Andreas Krause
35
35
0
05 Nov 2021
Adaptive Low-Pass Filtering using Sliding Window Gaussian Processes
Adaptive Low-Pass Filtering using Sliding Window Gaussian Processes
Alejandro Jose Ordóñez Conejo
Armin Lederer
Sandra Hirche
15
4
0
05 Nov 2021
Contextual Bayesian optimization with binary outputs
Contextual Bayesian optimization with binary outputs
T. Fauvel
M. Chalk
40
3
0
05 Nov 2021
Overcoming Digital Gravity when using AI in Public Health Decisions
Overcoming Digital Gravity when using AI in Public Health Decisions
S. Remy
Aisha Walcott-Bryant
Nelson Bore
C. Wachira
J. Kuehnert
AI4CE
8
1
0
05 Nov 2021
DOCKSTRING: easy molecular docking yields better benchmarks for ligand
  design
DOCKSTRING: easy molecular docking yields better benchmarks for ligand design
Miguel García-Ortegón
G. Simm
Austin Tripp
José Miguel Hernández-Lobato
A. Bender
S. Bacallado
42
75
0
29 Oct 2021
Differentially Private Federated Bayesian Optimization with Distributed
  Exploration
Differentially Private Federated Bayesian Optimization with Distributed Exploration
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
26
41
0
27 Oct 2021
Bayesian Optimization and Deep Learning forsteering wheel angle
  prediction
Bayesian Optimization and Deep Learning forsteering wheel angle prediction
Alessandro Riboni
Nicolò Ghioldi
Antonio Candelieri
M. Borrotti
LLMSV
27
10
0
22 Oct 2021
Sensing Cox Processes via Posterior Sampling and Positive Bases
Sensing Cox Processes via Posterior Sampling and Positive Bases
Mojmír Mutný
Andreas Krause
13
5
0
21 Oct 2021
On Reward-Free RL with Kernel and Neural Function Approximations:
  Single-Agent MDP and Markov Game
On Reward-Free RL with Kernel and Neural Function Approximations: Single-Agent MDP and Markov Game
Shuang Qiu
Jieping Ye
Zhaoran Wang
Zhuoran Yang
OffRL
47
23
0
19 Oct 2021
Set-based State Estimation with Probabilistic Consistency Guarantee
  under Epistemic Uncertainty
Set-based State Estimation with Probabilistic Consistency Guarantee under Epistemic Uncertainty
Shen Li
Theodoros Stouraitis
Michael Gienger
S. Vijayakumar
J. Shah
14
8
0
18 Oct 2021
An active learning approach for improving the performance of equilibrium
  based chemical simulations
An active learning approach for improving the performance of equilibrium based chemical simulations
M. Savino
Céline Lévy-Leduc
M. Leconte
B. Cochepin
20
5
0
15 Oct 2021
Gaussian Process Bandit Optimization with Few Batches
Gaussian Process Bandit Optimization with Few Batches
Zihan Li
Jonathan Scarlett
GP
135
47
0
15 Oct 2021
Contextual Combinatorial Bandits with Changing Action Sets via Gaussian
  Processes
Contextual Combinatorial Bandits with Changing Action Sets via Gaussian Processes
Andi Nika
Sepehr Elahi
Cem Tekin
30
2
0
05 Oct 2021
$Δ$-UQ: Accurate Uncertainty Quantification via Anchor
  Marginalization
ΔΔΔ-UQ: Accurate Uncertainty Quantification via Anchor Marginalization
Rushil Anirudh
Jayaraman J. Thiagarajan
38
1
0
05 Oct 2021
Machine Learning with Knowledge Constraints for Process Optimization of
  Open-Air Perovskite Solar Cell Manufacturing
Machine Learning with Knowledge Constraints for Process Optimization of Open-Air Perovskite Solar Cell Manufacturing
Zhe Liu
Nicholas Rolston
Austin C. Flick
T. Colburn
Zekun Ren
R. Dauskardt
Tonio Buonassisi
35
116
0
01 Oct 2021
Genealogical Population-Based Training for Hyperparameter Optimization
Genealogical Population-Based Training for Hyperparameter Optimization
Antoine Scardigli
P. Fournier
Matteo Vilucchio
D. Naccache
GP
22
0
0
30 Sep 2021
Pre-trained Gaussian processes for Bayesian optimization
Pre-trained Gaussian processes for Bayesian optimization
Zehao Wang
George E. Dahl
Kevin Swersky
Chansoo Lee
Zachary Nado
Justin Gilmer
Jasper Snoek
Zoubin Ghahramani
70
40
0
16 Sep 2021
Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
  Manifold Interpolation
Batched Data-Driven Evolutionary Multi-Objective Optimization Based on Manifold Interpolation
Ke Li
Renzhi Chen
32
27
0
12 Sep 2021
Active Multi-Object Exploration and Recognition via Tactile Whiskers
Active Multi-Object Exploration and Recognition via Tactile Whiskers
Chenxi Xiao
Shujia Xu
Wenzhuo Wu
J. Wachs
36
12
0
08 Sep 2021
Safety-Critical Learning of Robot Control with Temporal Logic
  Specifications
Safety-Critical Learning of Robot Control with Temporal Logic Specifications
Mingyu Cai
C. Vasile
40
4
0
07 Sep 2021
Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
  Safety-Critical Applications
Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for Safety-Critical Applications
A. Capone
Armin Lederer
Sandra Hirche
32
18
0
06 Sep 2021
Select Wisely and Explain: Active Learning and Probabilistic Local
  Post-hoc Explainability
Select Wisely and Explain: Active Learning and Probabilistic Local Post-hoc Explainability
Aditya Saini
Ranjitha Prasad
BDL
11
13
0
16 Aug 2021
Scalable3-BO: Big Data meets HPC - A scalable asynchronous parallel
  high-dimensional Bayesian optimization framework on supercomputers
Scalable3-BO: Big Data meets HPC - A scalable asynchronous parallel high-dimensional Bayesian optimization framework on supercomputers
Anh Tran
32
0
0
12 Aug 2021
Model-Based Opponent Modeling
Model-Based Opponent Modeling
Xiaopeng Yu
Jiechuan Jiang
Wanpeng Zhang
Haobin Jiang
Zongqing Lu
OffRL
41
28
0
04 Aug 2021
Active Learning in Gaussian Process State Space Model
Active Learning in Gaussian Process State Space Model
H. Yu
Dingling Yao
Christoph Zimmer
Marc Toussaint
D. Nguyen-Tuong
GP
22
4
0
30 Jul 2021
Trusted-Maximizers Entropy Search for Efficient Bayesian Optimization
Trusted-Maximizers Entropy Search for Efficient Bayesian Optimization
Q. Nguyen
Zhaoxuan Wu
K. H. Low
Patrick Jaillet
49
12
0
30 Jul 2021
Physics-constrained Deep Learning for Robust Inverse ECG Modeling
Physics-constrained Deep Learning for Robust Inverse ECG Modeling
Jianxin Xie
B. Yao
30
22
0
26 Jul 2021
High-Dimensional Simulation Optimization via Brownian Fields and Sparse
  Grids
High-Dimensional Simulation Optimization via Brownian Fields and Sparse Grids
Liang Ding
Rui Tuo
Xiaowei Zhang
27
3
0
19 Jul 2021
Contextual Games: Multi-Agent Learning with Side Information
Contextual Games: Multi-Agent Learning with Side Information
Pier Giuseppe Sessa
Ilija Bogunovic
Andreas Krause
Maryam Kamgarpour
54
21
0
13 Jul 2021
Efficient and Reactive Planning for High Speed Robot Air Hockey
Efficient and Reactive Planning for High Speed Robot Air Hockey
Puze Liu
Davide Tateo
Haitham Bou-Ammar
Jan Peters
41
18
0
13 Jul 2021
Scaling Gaussian Processes with Derivative Information Using Variational
  Inference
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
19
18
0
08 Jul 2021
Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
  Modeling
Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian Modeling
Kai Wang
Bryan Wilder
S. Suen
B. Dilkina
Milind Tambe
195
0
0
07 Jul 2021
A Short Note on the Relationship of Information Gain and Eluder
  Dimension
A Short Note on the Relationship of Information Gain and Eluder Dimension
Kaixuan Huang
Sham Kakade
Jason D. Lee
Qi Lei
8
8
0
06 Jul 2021
Weighted Gaussian Process Bandits for Non-stationary Environments
Weighted Gaussian Process Bandits for Non-stationary Environments
Yuntian Deng
Xingyu Zhou
Baekjin Kim
Ambuj Tewari
Abhishek Gupta
Ness B. Shroff
19
23
0
06 Jul 2021
A Map of Bandits for E-commerce
A Map of Bandits for E-commerce
Yi Liu
Lihong Li
16
10
0
01 Jul 2021
Counterfactual Explanations for Arbitrary Regression Models
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
24
26
0
29 Jun 2021
An Efficient Batch Constrained Bayesian Optimization Approach for Analog
  Circuit Synthesis via Multi-objective Acquisition Ensemble
An Efficient Batch Constrained Bayesian Optimization Approach for Analog Circuit Synthesis via Multi-objective Acquisition Ensemble
Shuhan Zhang
Fan Yang
Changhao Yan
Dian Zhou
Xuan Zeng
31
65
0
28 Jun 2021
Machine Learning based optimization for interval uncertainty propagation
Machine Learning based optimization for interval uncertainty propagation
Alice Cicirello
Filippo Giunta
18
10
0
21 Jun 2021
Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive
  Networks
Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive Networks
Shibo Li
Robert M. Kirby
Shandian Zhe
35
13
0
18 Jun 2021
Previous
123456...111213
Next