ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0911.0054
  4. Cited By
Learning Exponential Families in High-Dimensions: Strong Convexity and
  Sparsity

Learning Exponential Families in High-Dimensions: Strong Convexity and Sparsity

31 October 2009
Sham Kakade
Ohad Shamir
Karthik Sindharan
Ambuj Tewari
ArXivPDFHTML

Papers citing "Learning Exponential Families in High-Dimensions: Strong Convexity and Sparsity"

16 / 16 papers shown
Title
Concentration Inequalities for Statistical Inference
Concentration Inequalities for Statistical Inference
Huiming Zhang
Songxi Chen
53
63
0
24 Feb 2025
High-dimensional Multi-class Classification with Presence-only Data
High-dimensional Multi-class Classification with Presence-only Data
Lili Zheng
Garvesh Raskutti
33
1
0
18 Apr 2023
Distributional Robustness Bounds Generalization Errors
Distributional Robustness Bounds Generalization Errors
Shixiong Wang
Haowei Wang
OOD
35
4
0
20 Dec 2022
Exponential Family Trend Filtering on Lattices
Exponential Family Trend Filtering on Lattices
Veeranjaneyulu Sadhanala
R. Bassett
James Sharpnack
D. McDonald
39
3
0
19 Sep 2022
Bregman Power k-Means for Clustering Exponential Family Data
Bregman Power k-Means for Clustering Exponential Family Data
Adithya Vellal
Saptarshi Chakraborty
Jason Xu
28
6
0
22 Jun 2022
A Computationally Efficient Method for Learning Exponential Family
  Distributions
A Computationally Efficient Method for Learning Exponential Family Distributions
Abhin Shah
Devavrat Shah
G. Wornell
30
10
0
28 Oct 2021
Classification vs regression in overparameterized regimes: Does the loss
  function matter?
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
43
149
0
16 May 2020
A modern maximum-likelihood theory for high-dimensional logistic
  regression
A modern maximum-likelihood theory for high-dimensional logistic regression
Pragya Sur
Emmanuel J. Candes
25
285
0
19 Mar 2018
Dynamic Pricing in High-dimensions
Dynamic Pricing in High-dimensions
Adel Javanmard
Hamid Nazerzadeh
69
136
0
24 Sep 2016
Highly-Smooth Zero-th Order Online Optimization Vianney Perchet
Highly-Smooth Zero-th Order Online Optimization Vianney Perchet
Francis R. Bach
Vianney Perchet
20
83
0
26 May 2016
Sparse Nonlinear Regression: Parameter Estimation and Asymptotic
  Inference
Sparse Nonlinear Regression: Parameter Estimation and Asymptotic Inference
Zhuoran Yang
Zhaoran Wang
Han Liu
Yonina C. Eldar
Tong Zhang
6
43
0
14 Nov 2015
A Geometric View on Constrained M-Estimators
A Geometric View on Constrained M-Estimators
Yen-Huan Li
Ya-Ping Hsieh
N. Zerbib
V. Cevher
19
6
0
26 Jun 2015
The Degrees of Freedom of Partly Smooth Regularizers
The Degrees of Freedom of Partly Smooth Regularizers
Samuel Vaiter
Charles-Alban Deledalle
M. Fadili
Gabriel Peyré
C. Dossal
97
49
0
22 Apr 2014
Sparse Signal Recovery under Poisson Statistics
Sparse Signal Recovery under Poisson Statistics
Delaram Motamedvaziri
M. Rohban
Venkatesh Saligrama
35
9
0
17 Jul 2013
Learning Model-Based Sparsity via Projected Gradient Descent
Learning Model-Based Sparsity via Projected Gradient Descent
S. Bahmani
P. Boufounos
Bhiksha Raj
39
18
0
07 Sep 2012
High-dimensional generalized linear models and the lasso
High-dimensional generalized linear models and the lasso
Sara van de Geer
196
749
0
04 Apr 2008
1