ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1307.4666
33
9

Sparse Signal Recovery under Poisson Statistics

17 July 2013
Delaram Motamedvaziri
M. Rohban
Venkatesh Saligrama
ArXivPDFHTML
Abstract

We are motivated by problems that arise in a number of applications such as Online Marketing and explosives detection, where the observations are usually modeled using Poisson statistics. We model each observation as a Poisson random variable whose mean is a sparse linear superposition of known patterns. Unlike many conventional problems observations here are not identically distributed since they are associated with different sensing modalities. We analyze the performance of a Maximum Likelihood (ML) decoder, which for our Poisson setting involves a non-linear optimization but yet is computationally tractable. We derive fundamental sample complexity bounds for sparse recovery when the measurements are contaminated with Poisson noise. In contrast to the least-squares linear regression setting with Gaussian noise, we observe that in addition to sparsity, the scale of the parameters also fundamentally impacts sample complexity. We introduce a novel notion of Restricted Likelihood Perturbation (RLP), to jointly account for scale and sparsity. We derive sample complexity bounds for ℓ1\ell_1ℓ1​ regularized ML estimators in terms of RLP and further specialize these results for deterministic and random sensing matrix designs.

View on arXiv
Comments on this paper