ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0910.2042
  4. Cited By
Minimax rates of estimation for high-dimensional linear regression over
  $\ell_q$-balls

Minimax rates of estimation for high-dimensional linear regression over ℓq\ell_qℓq​-balls

11 October 2009
Garvesh Raskutti
Martin J. Wainwright
Bin Yu
ArXivPDFHTML

Papers citing "Minimax rates of estimation for high-dimensional linear regression over $\ell_q$-balls"

50 / 58 papers shown
Title
Mallows-type model averaging: Non-asymptotic analysis and all-subset combination
Mallows-type model averaging: Non-asymptotic analysis and all-subset combination
Jingfu Peng
MoMe
37
0
0
05 May 2025
Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning
Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning
Frederik Hoppe
C. M. Verdun
Hannah Laus
Felix Krahmer
Holger Rauhut
UQCV
22
1
0
18 Jul 2024
Structured Low-Rank Tensors for Generalized Linear Models
Structured Low-Rank Tensors for Generalized Linear Models
Batoul Taki
Anand D. Sarwate
W. Bajwa
21
2
0
05 Aug 2023
Slow Kill for Big Data Learning
Slow Kill for Big Data Learning
Yiyuan She
Jianhui Shen
Adrian Barbu
20
3
0
02 May 2023
Fundamental Tradeoffs in Learning with Prior Information
Fundamental Tradeoffs in Learning with Prior Information
Anirudha Majumdar
27
0
0
26 Apr 2023
PRIMO: Private Regression in Multiple Outcomes
PRIMO: Private Regression in Multiple Outcomes
Seth Neel
23
0
0
07 Mar 2023
A distribution-free mixed-integer optimization approach to hierarchical
  modelling of clustered and longitudinal data
A distribution-free mixed-integer optimization approach to hierarchical modelling of clustered and longitudinal data
Madhav Sankaranarayanan
Intekhab Hossain
Tom Chen
13
0
0
06 Feb 2023
The Contextual Lasso: Sparse Linear Models via Deep Neural Networks
The Contextual Lasso: Sparse Linear Models via Deep Neural Networks
Ryan Thompson
Amir Dezfouli
Robert Kohn
31
4
0
02 Feb 2023
Implicit Regularization Leads to Benign Overfitting for Sparse Linear
  Regression
Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression
Mo Zhou
Rong Ge
27
2
0
01 Feb 2023
Uncertainty quantification for sparse Fourier recovery
Uncertainty quantification for sparse Fourier recovery
F. Hoppe
Felix Krahmer
C. M. Verdun
Marion I. Menzel
Holger Rauhut
27
7
0
30 Dec 2022
Quantizing Heavy-tailed Data in Statistical Estimation: (Near) Minimax
  Rates, Covariate Quantization, and Uniform Recovery
Quantizing Heavy-tailed Data in Statistical Estimation: (Near) Minimax Rates, Covariate Quantization, and Uniform Recovery
Junren Chen
Michael Kwok-Po Ng
Di Wang
MQ
24
12
0
30 Dec 2022
Spectral Regularization Allows Data-frugal Learning over Combinatorial
  Spaces
Spectral Regularization Allows Data-frugal Learning over Combinatorial Spaces
Amirali Aghazadeh
Nived Rajaraman
Tony Tu
Kannan Ramchandran
17
2
0
05 Oct 2022
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the
  Optimization Landscape Around the True Solution
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution
Jianhao Ma
S. Fattahi
42
5
0
15 Jul 2022
Consistent Estimation for PCA and Sparse Regression with Oblivious
  Outliers
Consistent Estimation for PCA and Sparse Regression with Oblivious Outliers
Tommaso dÓrsi
Chih-Hung Liu
Rajai Nasser
Gleb Novikov
David Steurer
Stefan Tiegel
26
11
0
04 Nov 2021
A Bernstein-type Inequality for High Dimensional Linear Processes with
  Applications to Robust Estimation of Time Series Regressions
A Bernstein-type Inequality for High Dimensional Linear Processes with Applications to Robust Estimation of Time Series Regressions
Linbo Liu
Danna Zhang
AI4TS
40
1
0
21 Sep 2021
A unified precision matrix estimation framework via sparse column-wise
  inverse operator under weak sparsity
A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity
Zeyu Wu
Cheng-Long Wang
Weidong Liu
28
3
0
07 Jul 2021
Mostly Harmless Machine Learning: Learning Optimal Instruments in Linear
  IV Models
Mostly Harmless Machine Learning: Learning Optimal Instruments in Linear IV Models
Jiafeng Chen
Daniel L. Chen
Greg Lewis
CML
25
15
0
12 Nov 2020
Precise High-Dimensional Asymptotics for Quantifying Heterogeneous Transfers
Precise High-Dimensional Asymptotics for Quantifying Heterogeneous Transfers
Fan Yang
Hongyang R. Zhang
Sen Wu
Christopher Ré
Weijie J. Su
56
10
0
22 Oct 2020
Transfer Learning via $\ell_1$ Regularization
Transfer Learning via ℓ1\ell_1ℓ1​ Regularization
Masaaki Takada
Hironori Fujisawa
9
7
0
26 Jun 2020
Transfer Learning for High-dimensional Linear Regression: Prediction,
  Estimation, and Minimax Optimality
Transfer Learning for High-dimensional Linear Regression: Prediction, Estimation, and Minimax Optimality
Sai Li
T. Tony Cai
Hongzhe Li
38
157
0
18 Jun 2020
Sparse Regression at Scale: Branch-and-Bound rooted in First-Order
  Optimization
Sparse Regression at Scale: Branch-and-Bound rooted in First-Order Optimization
Hussein Hazimeh
Rahul Mazumder
A. Saab
86
87
0
13 Apr 2020
An error bound for Lasso and Group Lasso in high dimensions
An error bound for Lasso and Group Lasso in high dimensions
Antoine Dedieu
11
3
0
21 Dec 2019
Does SLOPE outperform bridge regression?
Does SLOPE outperform bridge regression?
Shuaiwen Wang
Haolei Weng
A. Maleki
13
19
0
20 Sep 2019
A unifying approach for doubly-robust $\ell_1$ regularized estimation of
  causal contrasts
A unifying approach for doubly-robust ℓ1\ell_1ℓ1​ regularized estimation of causal contrasts
Ezequiel Smucler
A. Rotnitzky
J. M. Robins
CML
13
76
0
07 Apr 2019
High-Dimensional Bernoulli Autoregressive Process with Long-Range
  Dependence
High-Dimensional Bernoulli Autoregressive Process with Long-Range Dependence
Parthe Pandit
Mojtaba Sahraee-Ardakan
Arash A. Amini
S. Rangan
A. Fletcher
21
0
0
19 Mar 2019
Error bounds for sparse classifiers in high-dimensions
Error bounds for sparse classifiers in high-dimensions
Antoine Dedieu
20
7
0
07 Oct 2018
Approximation and Estimation for High-Dimensional Deep Learning Networks
Approximation and Estimation for High-Dimensional Deep Learning Networks
Andrew R. Barron
Jason M. Klusowski
19
59
0
10 Sep 2018
Fast Best Subset Selection: Coordinate Descent and Local Combinatorial
  Optimization Algorithms
Fast Best Subset Selection: Coordinate Descent and Local Combinatorial Optimization Algorithms
Hussein Hazimeh
Rahul Mazumder
19
180
0
05 Mar 2018
Nearly optimal Bayesian Shrinkage for High Dimensional Regression
Nearly optimal Bayesian Shrinkage for High Dimensional Regression
Qifan Song
F. Liang
16
76
0
24 Dec 2017
Convergence rates of least squares regression estimators with
  heavy-tailed errors
Convergence rates of least squares regression estimators with heavy-tailed errors
Q. Han
J. Wellner
15
44
0
07 Jun 2017
Approximate $l_0$-penalized estimation of piecewise-constant signals on
  graphs
Approximate l0l_0l0​-penalized estimation of piecewise-constant signals on graphs
Z. Fan
Leying Guan
26
21
0
04 Mar 2017
Adaptive Risk Bounds in Univariate Total Variation Denoising and Trend
  Filtering
Adaptive Risk Bounds in Univariate Total Variation Denoising and Trend Filtering
Adityanand Guntuboyina
Donovan Lieu
S. Chatterjee
B. Sen
23
66
0
16 Feb 2017
Robust Regression via Mutivariate Regression Depth
Robust Regression via Mutivariate Regression Depth
Chao Gao
24
48
0
15 Feb 2017
Minimax Lower Bounds for Ridge Combinations Including Neural Nets
Minimax Lower Bounds for Ridge Combinations Including Neural Nets
Jason M. Klusowski
Andrew R. Barron
27
22
0
09 Feb 2017
Optimal Kullback-Leibler Aggregation in Mixture Density Estimation by
  Maximum Likelihood
Optimal Kullback-Leibler Aggregation in Mixture Density Estimation by Maximum Likelihood
A. Dalalyan
M. Sebbar
FedML
36
9
0
18 Jan 2017
Dynamic Pricing in High-dimensions
Dynamic Pricing in High-dimensions
Adel Javanmard
Hamid Nazerzadeh
66
136
0
24 Sep 2016
The DFS Fused Lasso: Linear-Time Denoising over General Graphs
The DFS Fused Lasso: Linear-Time Denoising over General Graphs
Oscar Hernan Madrid Padilla
James G. Scott
James Sharpnack
R. Tibshirani
FedML
34
67
0
11 Aug 2016
Ridge regression and asymptotic minimax estimation over spheres of
  growing dimension
Ridge regression and asymptotic minimax estimation over spheres of growing dimension
Lee H. Dicker
22
75
0
15 Jan 2016
Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression
Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression
Bryon Aragam
Arash A. Amini
Qing Zhou
CML
19
42
0
29 Nov 2015
Consistent Parameter Estimation for LASSO and Approximate Message
  Passing
Consistent Parameter Estimation for LASSO and Approximate Message Passing
Ali Mousavi
A. Maleki
Richard G. Baraniuk
11
58
0
03 Nov 2015
A Geometric View on Constrained M-Estimators
A Geometric View on Constrained M-Estimators
Yen-Huan Li
Ya-Ping Hsieh
N. Zerbib
V. Cevher
19
6
0
26 Jun 2015
A General Framework for Bayes Structured Linear Models
A General Framework for Bayes Structured Linear Models
Chao Gao
A. van der Vaart
Harrison H. Zhou
34
57
0
06 Jun 2015
Implementable confidence sets in high dimensional regression
Implementable confidence sets in high dimensional regression
Alexandra Carpentier
27
4
0
19 Jan 2015
Pathwise Coordinate Optimization for Sparse Learning: Algorithm and
  Theory
Pathwise Coordinate Optimization for Sparse Learning: Algorithm and Theory
T. Zhao
Han Liu
Tong Zhang
32
46
0
23 Dec 2014
Sparse Modeling for Image and Vision Processing
Sparse Modeling for Image and Vision Processing
Julien Mairal
Francis R. Bach
Jean Ponce
VLM
37
487
0
12 Nov 2014
High Dimensional Semiparametric Scale-Invariant Principal Component
  Analysis
High Dimensional Semiparametric Scale-Invariant Principal Component Analysis
Fang Han
Han Liu
40
16
0
18 Feb 2014
An RKHS Approach to Estimation with Sparsity Constraints
An RKHS Approach to Estimation with Sparsity Constraints
A. Jung
40
3
0
22 Nov 2013
Regularized M-estimators with nonconvexity: Statistical and algorithmic
  theory for local optima
Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima
Po-Ling Loh
Martin J. Wainwright
26
512
0
10 May 2013
The Lasso for High-Dimensional Regression with a Possible Change-Point
The Lasso for High-Dimensional Regression with a Possible Change-Point
S. Lee
M. Seo
Youngki Shin
66
124
0
21 Sep 2012
Nearly optimal minimax estimator for high-dimensional sparse linear
  regression
Nearly optimal minimax estimator for high-dimensional sparse linear regression
Li Zhang
38
12
0
27 Jun 2012
12
Next