Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0910.2042
Cited By
Minimax rates of estimation for high-dimensional linear regression over
ℓ
q
\ell_q
ℓ
q
-balls
11 October 2009
Garvesh Raskutti
Martin J. Wainwright
Bin Yu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minimax rates of estimation for high-dimensional linear regression over $\ell_q$-balls"
50 / 58 papers shown
Title
Mallows-type model averaging: Non-asymptotic analysis and all-subset combination
Jingfu Peng
MoMe
37
0
0
05 May 2025
Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning
Frederik Hoppe
C. M. Verdun
Hannah Laus
Felix Krahmer
Holger Rauhut
UQCV
22
1
0
18 Jul 2024
Structured Low-Rank Tensors for Generalized Linear Models
Batoul Taki
Anand D. Sarwate
W. Bajwa
21
2
0
05 Aug 2023
Slow Kill for Big Data Learning
Yiyuan She
Jianhui Shen
Adrian Barbu
20
3
0
02 May 2023
Fundamental Tradeoffs in Learning with Prior Information
Anirudha Majumdar
27
0
0
26 Apr 2023
PRIMO: Private Regression in Multiple Outcomes
Seth Neel
23
0
0
07 Mar 2023
A distribution-free mixed-integer optimization approach to hierarchical modelling of clustered and longitudinal data
Madhav Sankaranarayanan
Intekhab Hossain
Tom Chen
13
0
0
06 Feb 2023
The Contextual Lasso: Sparse Linear Models via Deep Neural Networks
Ryan Thompson
Amir Dezfouli
Robert Kohn
31
4
0
02 Feb 2023
Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression
Mo Zhou
Rong Ge
27
2
0
01 Feb 2023
Uncertainty quantification for sparse Fourier recovery
F. Hoppe
Felix Krahmer
C. M. Verdun
Marion I. Menzel
Holger Rauhut
27
7
0
30 Dec 2022
Quantizing Heavy-tailed Data in Statistical Estimation: (Near) Minimax Rates, Covariate Quantization, and Uniform Recovery
Junren Chen
Michael Kwok-Po Ng
Di Wang
MQ
24
12
0
30 Dec 2022
Spectral Regularization Allows Data-frugal Learning over Combinatorial Spaces
Amirali Aghazadeh
Nived Rajaraman
Tony Tu
Kannan Ramchandran
17
2
0
05 Oct 2022
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution
Jianhao Ma
S. Fattahi
42
5
0
15 Jul 2022
Consistent Estimation for PCA and Sparse Regression with Oblivious Outliers
Tommaso dÓrsi
Chih-Hung Liu
Rajai Nasser
Gleb Novikov
David Steurer
Stefan Tiegel
26
11
0
04 Nov 2021
A Bernstein-type Inequality for High Dimensional Linear Processes with Applications to Robust Estimation of Time Series Regressions
Linbo Liu
Danna Zhang
AI4TS
40
1
0
21 Sep 2021
A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity
Zeyu Wu
Cheng-Long Wang
Weidong Liu
28
3
0
07 Jul 2021
Mostly Harmless Machine Learning: Learning Optimal Instruments in Linear IV Models
Jiafeng Chen
Daniel L. Chen
Greg Lewis
CML
25
15
0
12 Nov 2020
Precise High-Dimensional Asymptotics for Quantifying Heterogeneous Transfers
Fan Yang
Hongyang R. Zhang
Sen Wu
Christopher Ré
Weijie J. Su
56
10
0
22 Oct 2020
Transfer Learning via
ℓ
1
\ell_1
ℓ
1
Regularization
Masaaki Takada
Hironori Fujisawa
9
7
0
26 Jun 2020
Transfer Learning for High-dimensional Linear Regression: Prediction, Estimation, and Minimax Optimality
Sai Li
T. Tony Cai
Hongzhe Li
38
157
0
18 Jun 2020
Sparse Regression at Scale: Branch-and-Bound rooted in First-Order Optimization
Hussein Hazimeh
Rahul Mazumder
A. Saab
86
87
0
13 Apr 2020
An error bound for Lasso and Group Lasso in high dimensions
Antoine Dedieu
11
3
0
21 Dec 2019
Does SLOPE outperform bridge regression?
Shuaiwen Wang
Haolei Weng
A. Maleki
13
19
0
20 Sep 2019
A unifying approach for doubly-robust
ℓ
1
\ell_1
ℓ
1
regularized estimation of causal contrasts
Ezequiel Smucler
A. Rotnitzky
J. M. Robins
CML
13
76
0
07 Apr 2019
High-Dimensional Bernoulli Autoregressive Process with Long-Range Dependence
Parthe Pandit
Mojtaba Sahraee-Ardakan
Arash A. Amini
S. Rangan
A. Fletcher
21
0
0
19 Mar 2019
Error bounds for sparse classifiers in high-dimensions
Antoine Dedieu
20
7
0
07 Oct 2018
Approximation and Estimation for High-Dimensional Deep Learning Networks
Andrew R. Barron
Jason M. Klusowski
19
59
0
10 Sep 2018
Fast Best Subset Selection: Coordinate Descent and Local Combinatorial Optimization Algorithms
Hussein Hazimeh
Rahul Mazumder
19
180
0
05 Mar 2018
Nearly optimal Bayesian Shrinkage for High Dimensional Regression
Qifan Song
F. Liang
16
76
0
24 Dec 2017
Convergence rates of least squares regression estimators with heavy-tailed errors
Q. Han
J. Wellner
15
44
0
07 Jun 2017
Approximate
l
0
l_0
l
0
-penalized estimation of piecewise-constant signals on graphs
Z. Fan
Leying Guan
26
21
0
04 Mar 2017
Adaptive Risk Bounds in Univariate Total Variation Denoising and Trend Filtering
Adityanand Guntuboyina
Donovan Lieu
S. Chatterjee
B. Sen
23
66
0
16 Feb 2017
Robust Regression via Mutivariate Regression Depth
Chao Gao
24
48
0
15 Feb 2017
Minimax Lower Bounds for Ridge Combinations Including Neural Nets
Jason M. Klusowski
Andrew R. Barron
27
22
0
09 Feb 2017
Optimal Kullback-Leibler Aggregation in Mixture Density Estimation by Maximum Likelihood
A. Dalalyan
M. Sebbar
FedML
36
9
0
18 Jan 2017
Dynamic Pricing in High-dimensions
Adel Javanmard
Hamid Nazerzadeh
66
136
0
24 Sep 2016
The DFS Fused Lasso: Linear-Time Denoising over General Graphs
Oscar Hernan Madrid Padilla
James G. Scott
James Sharpnack
R. Tibshirani
FedML
34
67
0
11 Aug 2016
Ridge regression and asymptotic minimax estimation over spheres of growing dimension
Lee H. Dicker
22
75
0
15 Jan 2016
Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression
Bryon Aragam
Arash A. Amini
Qing Zhou
CML
19
42
0
29 Nov 2015
Consistent Parameter Estimation for LASSO and Approximate Message Passing
Ali Mousavi
A. Maleki
Richard G. Baraniuk
11
58
0
03 Nov 2015
A Geometric View on Constrained M-Estimators
Yen-Huan Li
Ya-Ping Hsieh
N. Zerbib
V. Cevher
19
6
0
26 Jun 2015
A General Framework for Bayes Structured Linear Models
Chao Gao
A. van der Vaart
Harrison H. Zhou
34
57
0
06 Jun 2015
Implementable confidence sets in high dimensional regression
Alexandra Carpentier
27
4
0
19 Jan 2015
Pathwise Coordinate Optimization for Sparse Learning: Algorithm and Theory
T. Zhao
Han Liu
Tong Zhang
32
46
0
23 Dec 2014
Sparse Modeling for Image and Vision Processing
Julien Mairal
Francis R. Bach
Jean Ponce
VLM
37
487
0
12 Nov 2014
High Dimensional Semiparametric Scale-Invariant Principal Component Analysis
Fang Han
Han Liu
40
16
0
18 Feb 2014
An RKHS Approach to Estimation with Sparsity Constraints
A. Jung
40
3
0
22 Nov 2013
Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima
Po-Ling Loh
Martin J. Wainwright
26
512
0
10 May 2013
The Lasso for High-Dimensional Regression with a Possible Change-Point
S. Lee
M. Seo
Youngki Shin
66
124
0
21 Sep 2012
Nearly optimal minimax estimator for high-dimensional sparse linear regression
Li Zhang
38
12
0
27 Jun 2012
1
2
Next