An RKHS Approach to Estimation with Sparsity Constraints

The investigation of the effects of sparsity or sparsity constraints in signal processing problems has received considerable attention recently. Sparsity constraints refer to the a priori information that the object or signal of interest can be represented by using only few elements of a predefined dictionary. Within this thesis, sparsity refers to the fact that a vector to be estimated has only few nonzero entries. One specific field concerned with sparsity constraints has become popular under the name Compressed Sensing (CS). Within CS, the sparsity is exploited in order to perform (nearly) lossless compression. Moreover, this compression is carried out jointly or simultaneously with the process of sensing a physical quantity. In contrast to CS, one can alternatively use sparsity to enhance signal processing methods. Obviously, sparsity constraints can only improve the obtainable estimation performance since the constraints can be interpreted as an additional prior information about the unknown parameter vector which is to be estimated. Our main focus will be on this aspect of sparsity, i.e., we analyze how much we can gain in estimation performance due to the sparsity constraints.
View on arXiv