Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0908.3817
Cited By
Learning Bayesian Networks with the bnlearn R Package
26 August 2009
M. Scutari
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Bayesian Networks with the bnlearn R Package"
48 / 48 papers shown
Title
SNAP: Sequential Non-Ancestor Pruning for Targeted Causal Effect Estimation With an Unknown Graph
Mátyás Schubert
Tom Claassen
Sara Magliacane
CML
71
0
0
11 Feb 2025
bnRep: A repository of Bayesian networks from the academic literature
Manuele Leonelli
16
2
0
27 Sep 2024
Adaptive Online Experimental Design for Causal Discovery
Muhammad Qasim Elahi
Lai Wei
Murat Kocaoglu
Mahsa Ghasemi
CML
39
1
0
19 May 2024
Generating Likely Counterfactuals Using Sum-Product Networks
Jiri Nemecek
Tomás Pevný
Jakub Marecek
TPM
65
0
0
25 Jan 2024
Learning Bayesian Networks with Heterogeneous Agronomic Data Sets via Mixed-Effect Models and Hierarchical Clustering
Lorenzo Valleggi
M. Scutari
F. Stefanini
19
2
0
11 Aug 2023
causalAssembly
\texttt{causalAssembly}
causalAssembly
: Generating Realistic Production Data for Benchmarking Causal Discovery
Konstantin Göbler
Tobias Windisch
Mathias Drton
T. Pychynski
Steffen Sonntag
Martin Roth
CML
67
9
0
19 Jun 2023
A Survey on Causal Discovery: Theory and Practice
Alessio Zanga
Fabio Stella
CML
24
37
0
17 May 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
26
24
0
27 Mar 2023
Learning and interpreting asymmetry-labeled DAGs: a case study on COVID-19 fear
Manuele Leonelli
Gherardo Varando
CML
18
6
0
02 Jan 2023
Fast Parallel Bayesian Network Structure Learning
Jiantong Jiang
Zeyi Wen
Ajmal Saeed Mian
25
6
0
08 Dec 2022
Trust Your
∇
\nabla
∇
: Gradient-based Intervention Targeting for Causal Discovery
Mateusz Olko
Michal Zajac
A. Nowak
Nino Scherrer
Yashas Annadani
Stefan Bauer
Lukasz Kucinski
Piotr Milos
CML
24
2
0
24 Nov 2022
cegpy: Modelling with Chain Event Graphs in Python
G. Walley
Aditi Shenvi
P. Strong
Katarzyna Kobalczyk
10
6
0
21 Nov 2022
Membership Inference Attacks and Generalization: A Causal Perspective
Teodora Baluta
Shiqi Shen
S. Hitarth
Shruti Tople
Prateek Saxena
OOD
MIACV
34
18
0
18 Sep 2022
A Causal-based Approach to Explain, Predict and Prevent Failures in Robotic Tasks
Maximilian Diehl
Karinne Ramirez-Amaro
CML
34
21
0
12 Sep 2022
A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning Enabling Technologies
Adam Thelen
Xiaoge Zhang
Olga Fink
Yan Lu
Sayan Ghosh
B. Youn
Michael D. Todd
S. Mahadevan
Chao Hu
Zhen Hu
SyDa
AI4CE
21
187
0
26 Aug 2022
Highly Efficient Structural Learning of Sparse Staged Trees
Manuele Leonelli
Gherardo Varando
10
13
0
14 Jun 2022
Causal Discovery for Fairness
Ruta Binkyt.e-Sadauskien.e
K. Makhlouf
Carlos Pinzón
Sami Zhioua
C. Palamidessi
CML
11
16
0
14 Jun 2022
PACE: A Parallelizable Computation Encoder for Directed Acyclic Graphs
Zehao Dong
Muhan Zhang
Fuhai Li
Yixin Chen
CML
GNN
27
17
0
19 Mar 2022
Distributed Learning of Generalized Linear Causal Networks
Qiaoling Ye
Arash A. Amini
Qing Zhou
CML
OOD
AI4CE
25
16
0
23 Jan 2022
Efficient Learning of Quadratic Variance Function Directed Acyclic Graphs via Topological Layers
Wei Zhou
Xin He
Wei Zhong
Junhui Wang
CML
27
4
0
01 Nov 2021
ParaLiNGAM: Parallel Causal Structure Learning for Linear non-Gaussian Acyclic Models
Amirhossein Shahbazinia
Saber Salehkaleybar
Matin Hashemi
CML
33
7
0
28 Sep 2021
A survey of Bayesian Network structure learning
N. K. Kitson
Anthony C. Constantinou
Zhi-gao Guo
Yang Liu
Kiattikun Chobtham
CML
24
181
0
23 Sep 2021
A Fast PC Algorithm with Reversed-order Pruning and A Parallelization Strategy
Kai Zhang
Chao Tian
Kun Zhang
Todd Johnson
Xiaoqian Jiang
CML
38
4
0
10 Sep 2021
WiseR: An end-to-end structure learning and deployment framework for causal graphical models
Shubham Maheshwari
Khushbu Pahwa
Tavpritesh Sethi
CML
19
1
0
16 Aug 2021
Staged trees and asymmetry-labeled DAGs
Gherardo Varando
Federico Carli
Manuele Leonelli
13
12
0
04 Aug 2021
Learning complex dependency structure of gene regulatory networks from high dimensional micro-array data with Gaussian Bayesian networks
C. E. Graafland
J. Gutiérrez
21
4
0
28 Jun 2021
Causal Learner: A Toolbox for Causal Structure and Markov Blanket Learning
Zhaolong Ling
Kui Yu
Yiwen Zhang
Lin Liu
Jiuyong Li
CML
23
28
0
11 Mar 2021
Towards Scalable Bayesian Learning of Causal DAGs
Jussi Viinikka
Antti Hyttinen
J. Pensar
Mikko Koivisto
CML
25
34
0
30 Sep 2020
Causal Discovery from Incomplete Data: A Deep Learning Approach
Yuhao Wang
Vlado Menkovski
Hao Wang
Xin Du
Mykola Pechenizkiy
CML
25
34
0
15 Jan 2020
Causality-based Feature Selection: Methods and Evaluations
Kui Yu
Xianjie Guo
Lin Liu
Jiuyong Li
Hao Wang
Zhaolong Ling
Xindong Wu
CML
16
92
0
17 Nov 2019
Alleviating Privacy Attacks via Causal Learning
Shruti Tople
Amit Sharma
A. Nori
MIACV
OOD
16
32
0
27 Sep 2019
missSBM: An R Package for Handling Missing Values in the Stochastic Block Model
P. Barbillon
J. Chiquet
Timothée Tabouy
10
2
0
28 Jun 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
18
196
0
24 Apr 2019
Testing Conditional Independence in Supervised Learning Algorithms
David S. Watson
Marvin N. Wright
CML
24
52
0
28 Jan 2019
A geometric characterisation of sensitivity analysis in monomial models
Manuele Leonelli
Eva Riccomagno
21
13
0
18 Dec 2018
Who Learns Better Bayesian Network Structures: Accuracy and Speed of Structure Learning Algorithms
M. Scutari
C. E. Graafland
J. Gutiérrez
CML
28
53
0
30 May 2018
Causal Queries from Observational Data in Biological Systems via Bayesian Networks: An Empirical Study in Small Networks
Alex E. White
Matthieu Vignes
CML
12
5
0
04 May 2018
Learning Bayesian Networks from Big Data with Greedy Search: Computational Complexity and Efficient Implementation
M. Scutari
C. Vitolo
A. Tucker
20
99
0
22 Apr 2018
Efficient Sampling and Structure Learning of Bayesian Networks
Jack Kuipers
Polina Suter
G. Moffa
TPM
CML
21
69
0
21 Mar 2018
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Diviyan Kalainathan
Olivier Goudet
Isabelle M Guyon
David Lopez-Paz
Michèle Sebag
CML
19
93
0
13 Mar 2018
Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena
Daniele Ramazzotti
Marco S. Nobile
M. Antoniotti
Alex Graudenzi
CML
11
4
0
08 Mar 2017
Combining Bayesian Approaches and Evolutionary Techniques for the Inference of Breast Cancer Networks
S. Beretta
M. Castelli
Ivo Gonçalves
I. Merelli
Daniele Ramazzotti
16
2
0
08 Mar 2017
High-dimensional consistency in score-based and hybrid structure learning
Preetam Nandy
Alain Hauser
Marloes H. Maathuis
39
128
0
09 Jul 2015
A hybrid algorithm for Bayesian network structure learning with application to multi-label learning
Maxime Gasse
A. Aussem
H. Elghazel
19
88
0
18 Jun 2015
A fast PC algorithm for high dimensional causal discovery with multi-core PCs
T. Le
Tao Hoang
Jiuyong Li
Lin Liu
Huawen Liu
26
139
0
09 Feb 2015
Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimised Implementations in the bnlearn R Package
M. Scutari
CML
52
164
0
30 Jun 2014
A Transformational Characterization of Equivalent Bayesian Network Structures
D. M. Chickering
151
416
0
20 Feb 2013
On Identifying Significant Edges in Graphical Models of Molecular Networks
M. Scutari
R. Nagarajan
60
167
0
05 Apr 2011
1