Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
0905.0642
Cited By
Simultaneous support recovery in high dimensions: Benefits and perils of block
ℓ
1
/
ℓ
∞
\ell_1/\ell_\infty
ℓ
1
/
ℓ
∞
-regularization
5 May 2009
S. Negahban
Martin J. Wainwright
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Simultaneous support recovery in high dimensions: Benefits and perils of block $\ell_1/\ell_\infty$-regularization"
9 / 9 papers shown
Title
Active Learning for Accurate Estimation of Linear Models
C. Riquelme
Mohammad Ghavamzadeh
A. Lazaric
41
11
0
02 Mar 2017
Taking Advantage of Sparsity in Multi-Task Learning
Karim Lounici
Massimiliano Pontil
Alexandre B. Tsybakov
Sara van de Geer
265
292
0
09 Mar 2009
The Benefit of Group Sparsity
Junzhou Huang
Tong Zhang
133
465
0
20 Jan 2009
Support union recovery in high-dimensional multivariate regression
G. Obozinski
Martin J. Wainwright
Michael I. Jordan
171
323
0
05 Aug 2008
Information-theoretic limits on sparse signal recovery: Dense versus sparse measurement matrices
Wei Wang
Martin J. Wainwright
Kannan Ramchandran
64
171
0
03 Jun 2008
Lasso-type recovery of sparse representations for high-dimensional data
N. Meinshausen
Bin Yu
195
879
0
01 Jun 2008
On the
ℓ
1
−
ℓ
q
\ell_1-\ell_q
ℓ
1
−
ℓ
q
Regularized Regression
Han Liu
Jian Zhang
144
18
0
11 Feb 2008
Simultaneous analysis of Lasso and Dantzig selector
Peter J. Bickel
Yaácov Ritov
Alexandre B. Tsybakov
282
2,527
0
07 Jan 2008
Sparse Additive Models
Pradeep Ravikumar
John D. Lafferty
Han Liu
Larry A. Wasserman
250
571
0
28 Nov 2007
1