ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0801.1095
  4. Cited By
Simultaneous analysis of Lasso and Dantzig selector

Simultaneous analysis of Lasso and Dantzig selector

7 January 2008
Peter J. Bickel
Yaácov Ritov
Alexandre B. Tsybakov
ArXivPDFHTML

Papers citing "Simultaneous analysis of Lasso and Dantzig selector"

50 / 504 papers shown
Title
Personalized Federated Learning under Model Dissimilarity Constraints
Personalized Federated Learning under Model Dissimilarity Constraints
Samuel Erickson
Mikael Johansson
FedML
35
0
0
12 May 2025
Mallows-type model averaging: Non-asymptotic analysis and all-subset combination
Mallows-type model averaging: Non-asymptotic analysis and all-subset combination
Jingfu Peng
MoMe
37
0
0
05 May 2025
Centroid Decision Forest
Centroid Decision Forest
Amjad Ali
Zardad Khan
Saeed Aldahmani
37
0
0
25 Mar 2025
Sparse Nonparametric Contextual Bandits
Sparse Nonparametric Contextual Bandits
Hamish Flynn
Julia Olkhovskaya
Paul Rognon-Vael
51
0
0
20 Mar 2025
Early-Stopped Mirror Descent for Linear Regression over Convex Bodies
Tobias Wegel
Gil Kur
Patrick Rebeschini
61
0
0
05 Mar 2025
Nonparametric Heterogeneous Long-term Causal Effect Estimation via Data Combination
Nonparametric Heterogeneous Long-term Causal Effect Estimation via Data Combination
Weilin Chen
Ruichu Cai
Junjie Wan
Zeqin Yang
José Miguel Hernández-Lobato
51
1
0
26 Feb 2025
Concentration Inequalities for Statistical Inference
Concentration Inequalities for Statistical Inference
Huiming Zhang
Songxi Chen
46
63
0
24 Feb 2025
Treatment Effect Estimation with Observational Network Data using Machine Learning
Treatment Effect Estimation with Observational Network Data using Machine Learning
Corinne Emmenegger
Meta-Lina Spohn
Timon Elmer
Peter Buhlmann
CML
60
3
1
20 Jan 2025
Linear Causal Bandits: Unknown Graph and Soft Interventions
Linear Causal Bandits: Unknown Graph and Soft Interventions
Zirui Yan
A. Tajer
CML
32
1
0
04 Nov 2024
Sparse Linear Regression: Sequential Convex Relaxation, Robust
  Restricted Null Space Property, and Variable Selection
Sparse Linear Regression: Sequential Convex Relaxation, Robust Restricted Null Space Property, and Variable Selection
Shujun Bi
Yonghua Yang
S. Pan
27
0
0
02 Nov 2024
Statistical Inference in High-dimensional Poisson Regression with
  Applications to Mediation Analysis
Statistical Inference in High-dimensional Poisson Regression with Applications to Mediation Analysis
Prabrisha Rakshit
Zijian Guo
28
1
0
28 Oct 2024
Annotation Efficiency: Identifying Hard Samples via Blocked Sparse
  Linear Bandits
Annotation Efficiency: Identifying Hard Samples via Blocked Sparse Linear Bandits
Adit Jain
Soumyabrata Pal
Sunav Choudhary
Ramasuri Narayanam
Vikram Krishnamurthy
21
1
0
26 Oct 2024
Non-parametric efficient estimation of marginal structural models with
  multi-valued time-varying treatments
Non-parametric efficient estimation of marginal structural models with multi-valued time-varying treatments
Axel Martin
Michele Santacatterina
Iván Díaz
24
1
0
27 Sep 2024
A Hybrid Registration and Fusion Method for Hyperspectral
  Super-resolution
A Hybrid Registration and Fusion Method for Hyperspectral Super-resolution
Kunjing Yang
Minru Bai
TingLu
31
0
0
07 Jul 2024
Profiled Transfer Learning for High Dimensional Linear Model
Profiled Transfer Learning for High Dimensional Linear Model
Ziqian Lin
Junlong Zhao
Fang Wang
Han Wang
39
1
0
02 Jun 2024
High-dimensional (Group) Adversarial Training in Linear Regression
High-dimensional (Group) Adversarial Training in Linear Regression
Yiling Xie
Xiaoming Huo
27
1
0
22 May 2024
Conformal Online Auction Design
Conformal Online Auction Design
Jiale Han
Xiaowu Dai
21
2
0
11 May 2024
A note on the minimax risk of sparse linear regression
A note on the minimax risk of sparse linear regression
Yilin Guo
Shubhangi Ghosh
Haolei Weng
A. Maleki
25
2
0
08 May 2024
Tuning parameter selection in econometrics
Tuning parameter selection in econometrics
Denis Chetverikov
24
2
0
05 May 2024
On properties of fractional posterior in generalized reduced-rank
  regression
On properties of fractional posterior in generalized reduced-rank regression
The Tien Mai
28
1
0
27 Apr 2024
Conformal prediction for multi-dimensional time series by ellipsoidal
  sets
Conformal prediction for multi-dimensional time series by ellipsoidal sets
Chen Xu
Hanyang Jiang
Yao Xie
27
20
0
06 Mar 2024
Applied Causal Inference Powered by ML and AI
Applied Causal Inference Powered by ML and AI
Victor Chernozhukov
Christian Hansen
Nathan Kallus
Martin Spindler
Vasilis Syrgkanis
CML
34
29
0
04 Mar 2024
Bagged Deep Image Prior for Recovering Images in the Presence of Speckle
  Noise
Bagged Deep Image Prior for Recovering Images in the Presence of Speckle Noise
Xi Chen
Zhewen Hou
Christopher A. Metzler
A. Maleki
S. Jalali
26
5
0
23 Feb 2024
Lasso with Latents: Efficient Estimation, Covariate Rescaling, and
  Computational-Statistical Gaps
Lasso with Latents: Efficient Estimation, Covariate Rescaling, and Computational-Statistical Gaps
Jonathan A. Kelner
Frederic Koehler
Raghu Meka
Dhruv Rohatgi
26
1
0
23 Feb 2024
Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation
Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation
Jikai Jin
Vasilis Syrgkanis
CML
67
1
0
22 Feb 2024
DoubleMLDeep: Estimation of Causal Effects with Multimodal Data
DoubleMLDeep: Estimation of Causal Effects with Multimodal Data
Sven Klaassen
Jan Teichert-Kluge
Philipp Bach
Victor Chernozhukov
Martin Spindler
Suhas Vijaykumar
BDL
CML
18
6
0
01 Feb 2024
A review of regularised estimation methods and cross-validation in
  spatiotemporal statistics
A review of regularised estimation methods and cross-validation in spatiotemporal statistics
Philipp Otto
A. Fassò
Paolo Maranzano
22
1
0
31 Jan 2024
Hierarchical Bayesian Inverse Problems: A High-Dimensional Statistics
  Viewpoint
Hierarchical Bayesian Inverse Problems: A High-Dimensional Statistics Viewpoint
D. Sanz-Alonso
Nathan Waniorek
20
0
0
05 Jan 2024
Universality in block dependent linear models with applications to
  nonparametric regression
Universality in block dependent linear models with applications to nonparametric regression
Samriddha Lahiry
Pragya Sur
23
1
0
30 Dec 2023
Step and Smooth Decompositions as Topological Clustering
Step and Smooth Decompositions as Topological Clustering
Luciano Vinas
Arash A. Amini
14
0
0
09 Nov 2023
High-Dimensional Statistics
High-Dimensional Statistics
Philippe Rigollet
Jan-Christian Hütter
6
0
0
30 Oct 2023
Covariance Operator Estimation: Sparsity, Lengthscale, and Ensemble
  Kalman Filters
Covariance Operator Estimation: Sparsity, Lengthscale, and Ensemble Kalman Filters
Omar Al Ghattas
Jiaheng Chen
D. Sanz-Alonso
Nathan Waniorek
21
4
0
25 Oct 2023
On Adaptive confidence Ellipsoids for sparse high dimensional linear
  models
On Adaptive confidence Ellipsoids for sparse high dimensional linear models
Xiaoyang Xie
11
0
0
24 Oct 2023
A non-asymptotic analysis of the single component PLS regression
A non-asymptotic analysis of the single component PLS regression
Luca Castelli
Clément Marteau
Irene Gannaz
11
1
0
16 Oct 2023
Assessing Electricity Service Unfairness with Transfer Counterfactual
  Learning
Assessing Electricity Service Unfairness with Transfer Counterfactual Learning
S. Wei
Xiangrui Kong
Á. Xavier
Shixiang Zhu
Yao Xie
Feng Qiu
21
1
0
05 Oct 2023
CoLiDE: Concomitant Linear DAG Estimation
CoLiDE: Concomitant Linear DAG Estimation
S. S. Saboksayr
Gonzalo Mateos
Mariano Tepper
CML
33
4
0
04 Oct 2023
Exploring and Learning in Sparse Linear MDPs without Computationally
  Intractable Oracles
Exploring and Learning in Sparse Linear MDPs without Computationally Intractable Oracles
Noah Golowich
Ankur Moitra
Dhruv Rohatgi
22
5
0
18 Sep 2023
Solving Quadratic Systems with Full-Rank Matrices Using Sparse or
  Generative Priors
Solving Quadratic Systems with Full-Rank Matrices Using Sparse or Generative Priors
Junren Chen
Shuai Huang
Michael K. Ng
Zhaoqiang Liu
15
1
0
16 Sep 2023
Addressing Dynamic and Sparse Qualitative Data: A Hilbert Space
  Embedding of Categorical Variables
Addressing Dynamic and Sparse Qualitative Data: A Hilbert Space Embedding of Categorical Variables
Anirban Mukherjee
Hannah H. Chang
CML
21
0
0
22 Aug 2023
Sharp minimax optimality of LASSO and SLOPE under double sparsity
  assumption
Sharp minimax optimality of LASSO and SLOPE under double sparsity assumption
Zhifan Li
Yanhang Zhang
J. Yin
16
3
0
18 Aug 2023
Varying-coefficients for regional quantile via KNN-based LASSO with
  applications to health outcome study
Varying-coefficients for regional quantile via KNN-based LASSO with applications to health outcome study
Seyoung Park
Eun Ryung Lee
H. Hong
11
2
0
08 Aug 2023
Anytime Model Selection in Linear Bandits
Anytime Model Selection in Linear Bandits
Parnian Kassraie
N. Emmenegger
Andreas Krause
Aldo Pacchiano
41
2
0
24 Jul 2023
An extended latent factor framework for ill-posed linear regression
An extended latent factor framework for ill-posed linear regression
G. Finocchio
Tatyana Krivobokova
31
2
0
17 Jul 2023
Performance of $\ell_1$ Regularization for Sparse Convex Optimization
Performance of ℓ1\ell_1ℓ1​ Regularization for Sparse Convex Optimization
Kyriakos Axiotis
T. Yasuda
25
0
0
14 Jul 2023
Accelerated stochastic approximation with state-dependent noise
Accelerated stochastic approximation with state-dependent noise
Sasila Ilandarideva
A. Juditsky
Guanghui Lan
Tianjiao Li
38
8
0
04 Jul 2023
Expected Shortfall LASSO
Expected Shortfall LASSO
Sander Barendse
22
0
0
03 Jul 2023
Unified Transfer Learning Models in High-Dimensional Linear Regression
Unified Transfer Learning Models in High-Dimensional Linear Regression
S. Liu
20
5
0
01 Jul 2023
Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes:
  An Approximate Penalized Poisson Likelihood Approach
Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach
Si Cheng
J. Wakefield
Ali Shojaie
6
0
0
11 Jun 2023
Predicting Rare Events by Shrinking Towards Proportional Odds
Predicting Rare Events by Shrinking Towards Proportional Odds
Gregory Faletto
Jacob Bien
20
0
0
30 May 2023
Feature Adaptation for Sparse Linear Regression
Feature Adaptation for Sparse Linear Regression
Jonathan A. Kelner
Frederic Koehler
Raghu Meka
Dhruv Rohatgi
17
5
0
26 May 2023
1234...91011
Next