ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.05756
14
0

Step and Smooth Decompositions as Topological Clustering

9 November 2023
Luciano Vinas
Arash A. Amini
ArXivPDFHTML
Abstract

We investigate a class of recovery problems for which observations are a noisy combination of continuous and step functions. These problems can be seen as non-injective instances of non-linear ICA with direct applications to image decontamination for magnetic resonance imaging. Alternately, the problem can be viewed as clustering in the presence of structured (smooth) contaminant. We show that a global topological property (graph connectivity) interacts with a local property (the degree of smoothness of the continuous component) to determine conditions under which the components are identifiable. Additionally, a practical estimation algorithm is provided for the case when the contaminant lies in a reproducing kernel Hilbert space of continuous functions. Algorithm effectiveness is demonstrated through a series of simulations and real-world studies.

View on arXiv
Comments on this paper