ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.12341
128
0

Uncertainty Quantification for Machine Learning: One Size Does Not Fit All

13 December 2025
Paul Hofman
Yusuf Sale
Eyke Hüllermeier
    UQCVUD
ArXiv (abs)PDFHTMLGithub
Main:7 Pages
5 Figures
Bibliography:2 Pages
9 Tables
Appendix:8 Pages
Abstract

Proper quantification of predictive uncertainty is essential for the use of machine learning in safety-critical applications. Various uncertainty measures have been proposed for this purpose, typically claiming superiority over other measures. In this paper, we argue that there is no single best measure. Instead, uncertainty quantification should be tailored to the specific application. To this end, we use a flexible family of uncertainty measures that distinguishes between total, aleatoric, and epistemic uncertainty of second-order distributions. These measures can be instantiated with specific loss functions, so-called proper scoring rules, to control their characteristics, and we show that different characteristics are useful for different tasks. In particular, we show that, for the task of selective prediction, the scoring rule should ideally match the task loss. On the other hand, for out-of-distribution detection, our results confirm that mutual information, a widely used measure of epistemic uncertainty, performs best. Furthermore, in an active learning setting, epistemic uncertainty based on zero-one loss is shown to consistently outperform other uncertainty measures.

View on arXiv
Comments on this paper