ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2512.04453
80
0

Open-Ended Goal Inference through Actions and Language for Human-Robot Collaboration

4 December 2025
Debasmita Ghose
Oz Gitelson
Marynel Vazquez
Brian Scassellati
    LM&Ro
ArXiv (abs)PDFHTML
Main:8 Pages
5 Figures
Bibliography:1 Pages
Appendix:1 Pages
Abstract

To collaborate with humans, robots must infer goals that are often ambiguous, difficult to articulate, or not drawn from a fixed set. Prior approaches restrict inference to a predefined goal set, rely only on observed actions, or depend exclusively on explicit instructions, making them brittle in real-world interactions. We present BALI (Bidirectional Action-Language Inference) for goal prediction, a method that integrates natural language preferences with observed human actions in a receding-horizon planning tree. BALI combines language and action cues from the human, asks clarifying questions only when the expected information gain from the answer outweighs the cost of interruption, and selects supportive actions that align with inferred goals. We evaluate the approach in collaborative cooking tasks, where goals may be novel to the robot and unbounded. Compared to baselines, BALI yields more stable goal predictions and significantly fewer mistakes.

View on arXiv
Comments on this paper