ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.22936
226
0

Robust Image Self-Recovery against Tampering using Watermark Generation with Pixel Shuffling

28 November 2025
Minyoung Kim
Paul Hongsuck Seo
    WIGM
ArXiv (abs)PDFHTML
Main:8 Pages
12 Figures
Bibliography:2 Pages
14 Tables
Appendix:12 Pages
Abstract

The rapid growth of Artificial Intelligence-Generated Content (AIGC) raises concerns about the authenticity of digital media. In this context, image self-recovery, reconstructing original content from its manipulated version, offers a practical solution for understanding the attacker's intent and restoring trustworthy data. However, existing methods often fail to accurately recover tampered regions, falling short of the primary goal of self-recovery. To address this challenge, we propose ReImage, a neural watermarking-based self-recovery framework that embeds a shuffled version of the target image into itself as a watermark. We design a generator that produces watermarks optimized for neural watermarking and introduce an image enhancement module to refine the recovered image. We further analyze and resolve key limitations of shuffled watermarking, enabling its effective use in self-recovery. We demonstrate that ReImage achieves state-of-the-art performance across diverse tampering scenarios, consistently producing high-quality recovered images. The code and pretrained models will be released upon publication.

View on arXiv
Comments on this paper