295

Tractable Probabilistic Models for Investment Planning

Main:10 Pages
4 Figures
Bibliography:2 Pages
Abstract

Investment planning in power utilities, such as generation and transmission expansion, requires decade-long forecasts under profound uncertainty. Forecasting of energy mix and energy use decades ahead is nontrivial. Classical approaches focus on generating a finite number of scenarios (modeled as a mixture of Diracs in statistical theory terms), which limits insight into scenario-specific volatility and hinders robust decision-making. We propose an alternative using tractable probabilistic models (TPMs), particularly sum-product networks (SPNs). These models enable exact, scalable inference of key quantities such as scenario likelihoods, marginals, and conditional probabilities, supporting robust scenario expansion and risk assessment.

View on arXiv
Comments on this paper