All Papers
0 / 0 papers shown
Title |
|---|
Title |
|---|

Class imbalance remains a major challenge in machine learning, especially for high-dimensional biomedical data where nonlinear manifold structures dominate. Traditional oversampling methods such as SMOTE rely on local linear interpolation, often producing implausible synthetic samples. Deep generative models like Conditional Variational Autoencoders (CVAEs) better capture nonlinear distributions, but standard variants treat all minority samples equally, neglecting the importance of uncertain, boundary-region examples emphasized by heuristic methods like Borderline-SMOTE and ADASYN.
View on arXiv