ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2508.01335
63
0

StyleSentinel: Reliable Artistic Copyright Verification via Stylistic Fingerprints

2 August 2025
Lingxiao Chen
Liqin Wang
Wei Lu
    WIGM
ArXiv (abs)PDFHTML
Main:7 Pages
5 Figures
Bibliography:2 Pages
4 Tables
Abstract

The versatility of diffusion models in generating customized images has led to unauthorized usage of personal artwork, which poses a significant threat to the intellectual property of artists. Existing approaches relying on embedding additional information, such as perturbations, watermarks, and backdoors, suffer from limited defensive capabilities and fail to protect artwork published online. In this paper, we propose StyleSentinel, an approach for copyright protection of artwork by verifying an inherent stylistic fingerprint in the artist's artwork. Specifically, we employ a semantic self-reconstruction process to enhance stylistic expressiveness within the artwork, which establishes a dense and style-consistent manifold foundation for feature learning. Subsequently, we adaptively fuse multi-layer image features to encode abstract artistic style into a compact stylistic fingerprint. Finally, we model the target artist's style as a minimal enclosing hypersphere boundary in the feature space, transforming complex copyright verification into a robust one-class learning task. Extensive experiments demonstrate that compared with the state-of-the-art, StyleSentinel achieves superior performance on the one-sample verification task. We also demonstrate the effectiveness through online platforms.

View on arXiv
Comments on this paper