ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2507.18870
14
0

Transferable and Undefendable Point Cloud Attacks via Medial Axis Transform

25 July 2025
Keke Tang
Yuze Gao
Weilong Peng
Xiaofei Wang
Meie Fang
Peican Zhu
    AAML3DPC
ArXiv (abs)PDFHTML
Main:11 Pages
7 Figures
Bibliography:2 Pages
Abstract

Studying adversarial attacks on point clouds is essential for evaluating and improving the robustness of 3D deep learning models. However, most existing attack methods are developed under ideal white-box settings and often suffer from limited transferability to unseen models and insufficient robustness against common defense mechanisms. In this paper, we propose MAT-Adv, a novel adversarial attack framework that enhances both transferability and undefendability by explicitly perturbing the medial axis transform (MAT) representations, in order to induce inherent adversarialness in the resulting point clouds. Specifically, we employ an autoencoder to project input point clouds into compact MAT representations that capture the intrinsic geometric structure of point clouds. By perturbing these intrinsic representations, MAT-Adv introduces structural-level adversarial characteristics that remain effective across diverse models and defense strategies. To mitigate overfitting and prevent perturbation collapse, we incorporate a dropout strategy into the optimization of MAT perturbations, further improving transferability and undefendability. Extensive experiments demonstrate that MAT-Adv significantly outperforms existing state-of-the-art methods in both transferability and undefendability. Codes will be made public upon paper acceptance.

View on arXiv
Comments on this paper