ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.14846
  4. Cited By
Finding Optimal Kernel Size and Dimension in Convolutional Neural Networks An Architecture Optimization Approach

Finding Optimal Kernel Size and Dimension in Convolutional Neural Networks An Architecture Optimization Approach

16 June 2025
Shreyas Rajeev
B Sathish Babu
ArXiv (abs)PDFHTML

Papers citing "Finding Optimal Kernel Size and Dimension in Convolutional Neural Networks An Architecture Optimization Approach"

4 / 4 papers shown
Title
Spectral Leakage and Rethinking the Kernel Size in CNNs
Spectral Leakage and Rethinking the Kernel Size in CNNs
Nergis Tomen
Jan van Gemert
AAML
53
19
0
25 Jan 2021
CondConv: Conditionally Parameterized Convolutions for Efficient
  Inference
CondConv: Conditionally Parameterized Convolutions for Efficient Inference
Brandon Yang
Gabriel Bender
Quoc V. Le
Jiquan Ngiam
MedIm3DV
72
636
0
10 Apr 2019
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
427
26,539
0
05 Sep 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.2K
20,880
0
17 Apr 2017
1