ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2506.14582
  4. Cited By
Busting the Paper Ballot: Voting Meets Adversarial Machine Learning

Busting the Paper Ballot: Voting Meets Adversarial Machine Learning

17 June 2025
Kaleel Mahmood
Caleb Manicke
Ethan Rathbun
Aayushi Verma
Sohaib Ahmad
Nicholas Stamatakis
L. Michel
Benjamin Fuller
    AAML
ArXiv (abs)PDFHTML

Papers citing "Busting the Paper Ballot: Voting Meets Adversarial Machine Learning"

11 / 11 papers shown
Title
Physical Adversarial Attack meets Computer Vision: A Decade Survey
Physical Adversarial Attack meets Computer Vision: A Decade Survey
Hui Wei
Hao Tang
Xuemei Jia
Zhixiang Wang
Han-Bing Yu
Zhubo Li
Shiníchi Satoh
Luc Van Gool
Zheng Wang
AAML
72
56
0
30 Sep 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers
Twins: Revisiting the Design of Spatial Attention in Vision Transformers
Xiangxiang Chu
Zhi Tian
Yuqing Wang
Bo Zhang
Haibing Ren
Xiaolin K. Wei
Huaxia Xia
Chunhua Shen
ViT
82
1,026
0
28 Apr 2021
Going deeper with Image Transformers
Going deeper with Image Transformers
Hugo Touvron
Matthieu Cord
Alexandre Sablayrolles
Gabriel Synnaeve
Hervé Jégou
ViT
157
1,021
0
31 Mar 2021
Reliable evaluation of adversarial robustness with an ensemble of
  diverse parameter-free attacks
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
221
1,855
0
03 Mar 2020
Big Transfer (BiT): General Visual Representation Learning
Big Transfer (BiT): General Visual Representation Learning
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
J. Puigcerver
Jessica Yung
Sylvain Gelly
N. Houlsby
MQ
286
1,211
0
24 Dec 2019
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
234
3,194
0
01 Feb 2018
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
310
12,117
0
19 Jun 2017
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DVBDL
883
27,412
0
02 Dec 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
280
19,107
0
20 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
480
43,685
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,479
0
04 Sep 2014
1