Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2506.14263
Cited By
Towards Robust Learning to Optimize with Theoretical Guarantees
17 June 2025
Qingyu Song
Wei Lin
Juncheng Wang
Hong Xu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Towards Robust Learning to Optimize with Theoretical Guarantees"
16 / 16 papers shown
Title
Towards Constituting Mathematical Structures for Learning to Optimize
Jialin Liu
Xiaohan Chen
Zhangyang Wang
W. Yin
HanQin Cai
96
13
0
29 May 2023
Learning to Generalize Provably in Learning to Optimize
Junjie Yang
Tianlong Chen
Mingkang Zhu
Fengxiang He
Dacheng Tao
Yitao Liang
Zhangyang Wang
54
7
0
22 Feb 2023
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
149
535
0
31 Aug 2021
A Generalizable Approach to Learning Optimizers
Diogo Almeida
Clemens Winter
Jie Tang
Wojciech Zaremba
AI4CE
82
29
0
02 Jun 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
243
235
0
23 Mar 2021
Learning to Beamform in Heterogeneous Massive MIMO Networks
Minghe Zhu
Tsung-Hui Chang
Mingyi Hong
46
23
0
08 Nov 2020
Graph Neural Networks for Scalable Radio Resource Management: Architecture Design and Theoretical Analysis
Yifei Shen
Yuanming Shi
Jun Zhang
Khaled B. Letaief
GNN
37
264
0
15 Jul 2020
Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding Design for Multiuser MIMO Systems
Qiyu Hu
Yunlong Cai
Qingjiang Shi
Kaidi Xu
Guanding Yu
Z. Ding
40
174
0
15 Jun 2020
Safeguarded Learned Convex Optimization
Howard Heaton
Xiaohan Chen
Zhangyang Wang
W. Yin
61
22
0
04 Mar 2020
Ada-LISTA: Learned Solvers Adaptive to Varying Models
Aviad Aberdam
Alona Golts
Michael Elad
55
40
0
23 Jan 2020
Learned Optimizers that Scale and Generalize
Olga Wichrowska
Niru Maheswaranathan
Matthew W. Hoffman
Sergio Gomez Colmenarejo
Misha Denil
Nando de Freitas
Jascha Narain Sohl-Dickstein
AI4CE
60
284
0
14 Mar 2017
Online Learning Rate Adaptation with Hypergradient Descent
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark Schmidt
Frank Wood
ODL
80
250
0
14 Mar 2017
Learning Gradient Descent: Better Generalization and Longer Horizons
Kaifeng Lyu
Shunhua Jiang
Jian Li
76
114
0
10 Mar 2017
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
206
6,199
0
15 Sep 2016
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
115
2,008
0
14 Jun 2016
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
359
7,954
0
13 Jun 2012
1