Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2506.14113
Cited By
SKOLR: Structured Koopman Operator Linear RNN for Time-Series Forecasting
17 June 2025
Yitian Zhang
Liheng Ma
Antonios Valkanas
Boris N. Oreshkin
Mark Coates
AI4TS
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"SKOLR: Structured Koopman Operator Linear RNN for Time-Series Forecasting"
8 / 8 papers shown
Title
DAM: Towards A Foundation Model for Time Series Forecasting
L. N. Darlow
Qiwen Deng
Ahmed Hassan
Martin Asenov
Rajkarn Singh
Artjom Joosen
Adam Barker
Amos Storkey
AI4TS
AI4CE
69
4
0
25 Jul 2024
A decoder-only foundation model for time-series forecasting
Abhimanyu Das
Weihao Kong
Rajat Sen
Yichen Zhou
AI4TS
AI4CE
113
240
0
14 Oct 2023
iTransformer: Inverted Transformers Are Effective for Time Series Forecasting
Yong Liu
Tengge Hu
Haoran Zhang
Haixu Wu
Shiyu Wang
Lintao Ma
Mingsheng Long
AI4TS
93
547
0
10 Oct 2023
Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors
Yong Liu
Chenyu Li
Jianmin Wang
Mingsheng Long
AI4TS
79
118
0
30 May 2023
Resurrecting Recurrent Neural Networks for Long Sequences
Antonio Orvieto
Samuel L. Smith
Albert Gu
Anushan Fernando
Çağlar Gülçehre
Razvan Pascanu
Soham De
326
295
0
11 Mar 2023
FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting
Tian Zhou
Ziqing Ma
Xue Wang
Qingsong Wen
Liang Sun
Tao Yao
Wotao Yin
Rong Jin
AI4TS
174
187
0
18 May 2022
Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems
Enoch Yeung
Soumya Kundu
Nathan Oken Hodas
AI4CE
74
387
0
22 Aug 2017
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
David Salinas
Valentin Flunkert
Jan Gasthaus
AI4TS
UQCV
BDL
81
2,123
0
13 Apr 2017
1