Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2506.14054
Cited By
Scientifically-Interpretable Reasoning Network (ScIReN): Uncovering the Black-Box of Nature
16 June 2025
Joshua Fan
Haodi Xu
Feng Tao
Md Nasim
Marc Grimson
Yiqi Luo
Carla P. Gomes
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Scientifically-Interpretable Reasoning Network (ScIReN): Uncovering the Black-Box of Nature"
9 / 9 papers shown
Title
Hybrid Phenology Modeling for Predicting Temperature Effects on Tree Dormancy
Ron van Bree
Diego Marcos
Ioannis Athanasiadis
72
1
0
28 Jan 2025
KAN: Kolmogorov-Arnold Networks
Ziming Liu
Yixuan Wang
Sachin Vaidya
Fabian Ruehle
James Halverson
Marin Soljacic
Thomas Y. Hou
Max Tegmark
245
563
0
30 Apr 2024
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
Levi Melnick
Nicholas Frosst
Xuezhou Zhang
Ben Lengerich
R. Caruana
Geoffrey E. Hinton
92
420
0
29 Apr 2020
Achieving Conservation of Energy in Neural Network Emulators for Climate Modeling
Tom Beucler
S. Rasp
Michael S. Pritchard
Pierre Gentine
35
84
0
15 Jun 2019
Physics Guided RNNs for Modeling Dynamical Systems: A Case Study in Simulating Lake Temperature Profiles
X. Jia
J. Willard
Anuj Karpatne
J. Read
Jacob Aaron Zwart
M. Steinbach
Vipin Kumar
PINN
AI4CE
32
213
0
31 Oct 2018
A Simple and Effective Model-Based Variable Importance Measure
Brandon M. Greenwell
Bradley C. Boehmke
Andrew J. McCarthy
FAtt
TDI
45
230
0
12 May 2018
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,002
0
22 May 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
191
6,015
0
04 Mar 2017
Model-Agnostic Interpretability of Machine Learning
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
86
839
0
16 Jun 2016
1