Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2506.13955
Cited By
Bridging Unsupervised and Semi-Supervised Anomaly Detection: A Theoretically-Grounded and Practical Framework with Synthetic Anomalies
16 June 2025
Matthew Lau
Tian-Yi Zhou
Xiangchi Yuan
Jizhou Chen
Wenke Lee
Xiaoming Huo
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Bridging Unsupervised and Semi-Supervised Anomaly Detection: A Theoretically-Grounded and Practical Framework with Synthetic Anomalies"
9 / 9 papers shown
Title
NNG-Mix: Improving Semi-supervised Anomaly Detection with Pseudo-anomaly Generation
Hao Dong
Gaëtan Frusque
Yue Zhao
Eleni Chatzi
Olga Fink
AAML
81
7
0
20 Nov 2023
ADBench: Anomaly Detection Benchmark
Songqiao Han
Xiyang Hu
Hailiang Huang
Mingqi Jiang
Yue Zhao
OOD
74
313
0
19 Jun 2022
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
117
803
0
24 Sep 2020
Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure
John Sipple
50
55
0
12 Jul 2020
DROCC: Deep Robust One-Class Classification
Sachin Goyal
Aditi Raghunathan
Moksh Jain
H. Simhadri
Prateek Jain
VLM
82
166
0
28 Feb 2020
Deep Semi-Supervised Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Nico Görnitz
Alexander Binder
Emmanuel Müller
K. Müller
Marius Kloft
UQCV
58
547
0
06 Jun 2019
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,487
0
11 Dec 2018
Learning rates for classification with Gaussian kernels
Shaobo Lin
Jinshan Zeng
Xiangyu Chang
34
12
0
28 Feb 2017
Fast learning rates for plug-in classifiers
Jean-Yves Audibert
Alexandre B. Tsybakov
578
467
0
17 Aug 2007
1