Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2506.13714
Cited By
Understanding Learning Invariance in Deep Linear Networks
16 June 2025
Hao Duan
Guido Montúfar
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Understanding Learning Invariance in Deep Linear Networks"
39 / 39 papers shown
Title
Emergent Equivariance in Deep Ensembles
Jan E. Gerken
Pan Kessel
UQCV
MDE
64
8
0
05 Mar 2024
Algebraic Complexity and Neurovariety of Linear Convolutional Networks
Vahid Shahverdi
103
4
0
29 Jan 2024
Should Under-parameterized Student Networks Copy or Average Teacher Weights?
Berfin Simsek
Amire Bendjeddou
W. Gerstner
Johanni Brea
61
8
0
03 Nov 2023
Geometry of Linear Neural Networks: Equivariance and Invariance under Permutation Groups
Kathlén Kohn
Anna-Laura Sattelberger
Vahid Shahverdi
65
4
0
24 Sep 2023
On genuine invariance learning without weight-tying
A. Moskalev
A. Sepliarskaia
Erik J. Bekkers
A. Smeulders
CML
OOD
48
9
0
07 Aug 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
96
160
0
21 Jun 2023
Mildly Overparameterized ReLU Networks Have a Favorable Loss Landscape
Kedar Karhadkar
Michael Murray
Hanna Tseran
Guido Montúfar
49
8
0
31 May 2023
Function Space and Critical Points of Linear Convolutional Networks
Kathlén Kohn
Guido Montúfar
Vahid Shahverdi
Matthew Trager
57
13
0
12 Apr 2023
The Exact Sample Complexity Gain from Invariances for Kernel Regression
B. Tahmasebi
Stefanie Jegelka
56
19
0
24 Mar 2023
Optimization Dynamics of Equivariant and Augmented Neural Networks
Axel Flinth
F. Ohlsson
84
7
0
23 Mar 2023
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Pierre Bréchet
Katerina Papagiannouli
Jing An
Guido Montúfar
55
4
0
06 Mar 2023
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
71
33
0
22 Feb 2023
Symmetries, flat minima, and the conserved quantities of gradient flow
Bo Zhao
I. Ganev
Robin Walters
Rose Yu
Nima Dehmamy
77
20
0
31 Oct 2022
How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization
Jonas Geiping
Micah Goldblum
Gowthami Somepalli
Ravid Shwartz-Ziv
Tom Goldstein
A. Wilson
72
43
0
12 Oct 2022
Overparameterization from Computational Constraints
Sanjam Garg
S. Jha
Saeed Mahloujifar
Mohammad Mahmoody
Mingyuan Wang
47
2
0
27 Aug 2022
Geometry of Linear Convolutional Networks
Kathlén Kohn
Thomas Merkh
Guido Montúfar
Matthew Trager
64
20
0
03 Aug 2021
Geometry of the Loss Landscape in Overparameterized Neural Networks: Symmetries and Invariances
Berfin cSimcsek
François Ged
Arthur Jacot
Francesco Spadaro
Clément Hongler
W. Gerstner
Johanni Brea
AI4CE
73
102
0
25 May 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
162
197
0
19 Apr 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
100
91
0
25 Feb 2021
An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage
C. L. Zitnick
L. Chanussot
Abhishek Das
Siddharth Goyal
Javier Heras-Domingo
...
Kevin Tran
Brandon M. Wood
Junwoong Yoon
Devi Parikh
Zachary W. Ulissi
63
75
0
14 Oct 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
532
42,559
0
03 Dec 2019
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
68
133
0
03 Nov 2019
Learning deep linear neural networks: Riemannian gradient flows and convergence to global minimizers
B. Bah
Holger Rauhut
Ulrich Terstiege
Michael Westdickenberg
MLT
37
66
0
12 Oct 2019
Pure and Spurious Critical Points: a Geometric Study of Linear Networks
Matthew Trager
Kathlén Kohn
Joan Bruna
52
31
0
03 Oct 2019
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
87
509
0
31 May 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
242
1,655
0
28 Dec 2018
Invariant and Equivariant Graph Networks
Haggai Maron
Heli Ben-Hamu
Nadav Shamir
Y. Lipman
141
507
0
24 Dec 2018
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora
Nadav Cohen
Noah Golowich
Wei Hu
125
293
0
04 Oct 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
273
3,219
0
20 Jun 2018
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
MDE
124
413
0
01 Jun 2018
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
Sanjeev Arora
Nadav Cohen
Elad Hazan
105
488
0
19 Feb 2018
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
258
1,896
0
28 Dec 2017
Deep linear neural networks with arbitrary loss: All local minima are global
T. Laurent
J. V. Brecht
ODL
71
137
0
05 Dec 2017
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
Mahdi Soltanolkotabi
Adel Javanmard
Jason D. Lee
175
423
0
16 Jul 2017
Low-Rank Matrix Approximation in the Infinity Norm
Nicolas Gillis
Y. Shitov
49
27
0
31 May 2017
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
421
2,478
0
10 Mar 2017
Deep Learning without Poor Local Minima
Kenji Kawaguchi
ODL
224
925
0
23 May 2016
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
171
1,945
0
24 Feb 2016
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
ODL
183
1,852
0
20 Dec 2013
1