The robust interpretation of 3D environments is crucial for human-robot collaboration (HRC) applications, where safety and operational efficiency are paramount. Semantic segmentation plays a key role in this context by enabling a precise and detailed understanding of the environment. Considering the intense data hunger for real-world industrial annotated data essential for effective semantic segmentation, this paper introduces a pioneering approach in the Sim2Real domain adaptation for semantic segmentation of 3D point cloud data, specifically tailored for HRC. Our focus is on developing a network that robustly transitions from simulated environments to real-world applications, thereby enhancing its practical utility and impact on a safe HRC.In this work, we propose a dual-stream network architecture (FUSION) combining Dynamic Graph Convolutional Neural Networks (DGCNN) and Convolutional Neural Networks (CNN) augmented with residual layers as a Sim2Real domain adaptation algorithm for an industrial environment. The proposed model was evaluated on real-world HRC setups and simulation industrial point clouds, it showed increased state-of-the-art performance, achieving a segmentation accuracy of 97.76%, and superior robustness compared to existing methods.
View on arXiv@article{amin2025_2506.09552, title={ Enhancing Human-Robot Collaboration: A Sim2Real Domain Adaptation Algorithm for Point Cloud Segmentation in Industrial Environments }, author={ Fatemeh Mohammadi Amin and Darwin G. Caldwell and Hans Wernher van de Venn }, journal={arXiv preprint arXiv:2506.09552}, year={ 2025 } }