Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.24612
Cited By
Multi-criteria Rank-based Aggregation for Explainable AI
30 May 2025
Sujoy Chatterjee
Everton Romanzini Colombo
Marcos Medeiros Raimundo
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multi-criteria Rank-based Aggregation for Explainable AI"
20 / 20 papers shown
Title
Provably Better Explanations with Optimized Aggregation of Feature Attributions
Thomas Decker
Ananta R. Bhattarai
Jindong Gu
Volker Tresp
Florian Buettner
56
3
0
07 Jun 2024
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
Evandro S. Ortigossa
Fábio F. Dias
Brian Barr
Claudio T. Silva
L. G. Nonato
FAtt
84
3
0
25 Apr 2024
A comprehensive study on fidelity metrics for XAI
Miquel Miró-Nicolau
Antoni Jaume-i-Capó
Gabriel Moyà Alcover
46
11
0
19 Jan 2024
Accelerating the Global Aggregation of Local Explanations
Alon Mor
Yonatan Belinkov
B. Kimelfeld
FAtt
39
4
0
13 Dec 2023
Axiomatic Aggregations of Abductive Explanations
Gagan Biradar
Yacine Izza
Elita Lobo
Vignesh Viswanathan
Yair Zick
FAtt
56
6
0
29 Sep 2023
Discriminative Feature Attributions: Bridging Post Hoc Explainability and Inherent Interpretability
Usha Bhalla
Suraj Srinivas
Himabindu Lakkaraju
FAtt
CML
60
7
0
27 Jul 2023
Explainability in Machine Learning: a Pedagogical Perspective
Andreas Bueff
I. Papantonis
Auste Simkute
Vaishak Belle
36
2
0
21 Feb 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
228
190
0
03 Feb 2022
GLocalX -- From Local to Global Explanations of Black Box AI Models
Mattia Setzu
Riccardo Guidotti
A. Monreale
Franco Turini
D. Pedreschi
F. Giannotti
39
119
0
19 Jan 2021
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
63
120
0
03 Dec 2020
Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring
Michael Bücker
G. Szepannek
Alicja Gosiewska
P. Biecek
FaML
33
112
0
28 Sep 2020
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
75
219
0
01 May 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
75
96
0
05 Mar 2020
Can I Trust the Explainer? Verifying Post-hoc Explanatory Methods
Oana-Maria Camburu
Eleonora Giunchiglia
Jakob N. Foerster
Thomas Lukasiewicz
Phil Blunsom
FAtt
AAML
39
61
0
04 Oct 2019
Global Aggregations of Local Explanations for Black Box models
I. V. D. Linden
H. Haned
Evangelos Kanoulas
FAtt
33
65
0
05 Jul 2019
Aggregating explanation methods for stable and robust explainability
Laura Rieger
Lars Kai Hansen
AAML
FAtt
51
12
0
01 Mar 2019
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
105
938
0
20 Jun 2018
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
552
21,613
0
22 May 2017
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaML
AILaw
58
1,888
0
28 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
587
16,828
0
16 Feb 2016
1