ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.24612
  4. Cited By
Multi-criteria Rank-based Aggregation for Explainable AI

Multi-criteria Rank-based Aggregation for Explainable AI

30 May 2025
Sujoy Chatterjee
Everton Romanzini Colombo
Marcos Medeiros Raimundo
    XAI
ArXivPDFHTML

Papers citing "Multi-criteria Rank-based Aggregation for Explainable AI"

20 / 20 papers shown
Title
Provably Better Explanations with Optimized Aggregation of Feature
  Attributions
Provably Better Explanations with Optimized Aggregation of Feature Attributions
Thomas Decker
Ananta R. Bhattarai
Jindong Gu
Volker Tresp
Florian Buettner
56
3
0
07 Jun 2024
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
Evandro S. Ortigossa
Fábio F. Dias
Brian Barr
Claudio T. Silva
L. G. Nonato
FAtt
84
3
0
25 Apr 2024
A comprehensive study on fidelity metrics for XAI
A comprehensive study on fidelity metrics for XAI
Miquel Miró-Nicolau
Antoni Jaume-i-Capó
Gabriel Moyà Alcover
46
11
0
19 Jan 2024
Accelerating the Global Aggregation of Local Explanations
Accelerating the Global Aggregation of Local Explanations
Alon Mor
Yonatan Belinkov
B. Kimelfeld
FAtt
39
4
0
13 Dec 2023
Axiomatic Aggregations of Abductive Explanations
Axiomatic Aggregations of Abductive Explanations
Gagan Biradar
Yacine Izza
Elita Lobo
Vignesh Viswanathan
Yair Zick
FAtt
56
6
0
29 Sep 2023
Discriminative Feature Attributions: Bridging Post Hoc Explainability
  and Inherent Interpretability
Discriminative Feature Attributions: Bridging Post Hoc Explainability and Inherent Interpretability
Usha Bhalla
Suraj Srinivas
Himabindu Lakkaraju
FAtt
CML
60
7
0
27 Jul 2023
Explainability in Machine Learning: a Pedagogical Perspective
Explainability in Machine Learning: a Pedagogical Perspective
Andreas Bueff
I. Papantonis
Auste Simkute
Vaishak Belle
36
2
0
21 Feb 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
228
190
0
03 Feb 2022
GLocalX -- From Local to Global Explanations of Black Box AI Models
GLocalX -- From Local to Global Explanations of Black Box AI Models
Mattia Setzu
Riccardo Guidotti
A. Monreale
Franco Turini
D. Pedreschi
F. Giannotti
39
119
0
19 Jan 2021
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
63
120
0
03 Dec 2020
Transparency, Auditability and eXplainability of Machine Learning Models
  in Credit Scoring
Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring
Michael Bücker
G. Szepannek
Alicja Gosiewska
P. Biecek
FaML
33
112
0
28 Sep 2020
Evaluating and Aggregating Feature-based Model Explanations
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt
Adrian Weller
J. M. F. Moura
XAI
75
219
0
01 May 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
75
96
0
05 Mar 2020
Can I Trust the Explainer? Verifying Post-hoc Explanatory Methods
Can I Trust the Explainer? Verifying Post-hoc Explanatory Methods
Oana-Maria Camburu
Eleonora Giunchiglia
Jakob N. Foerster
Thomas Lukasiewicz
Phil Blunsom
FAtt
AAML
39
61
0
04 Oct 2019
Global Aggregations of Local Explanations for Black Box models
Global Aggregations of Local Explanations for Black Box models
I. V. D. Linden
H. Haned
Evangelos Kanoulas
FAtt
33
65
0
05 Jul 2019
Aggregating explanation methods for stable and robust explainability
Aggregating explanation methods for stable and robust explainability
Laura Rieger
Lars Kai Hansen
AAML
FAtt
51
12
0
01 Mar 2019
Towards Robust Interpretability with Self-Explaining Neural Networks
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
105
938
0
20 Jun 2018
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
552
21,613
0
22 May 2017
European Union regulations on algorithmic decision-making and a "right
  to explanation"
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaML
AILaw
58
1,888
0
28 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
587
16,828
0
16 Feb 2016
1