Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.23410
Cited By
From Parameters to Prompts: Understanding and Mitigating the Factuality Gap between Fine-Tuned LLMs
29 May 2025
Xuan Gong
Hanbo Huang
Shiyu Liang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"From Parameters to Prompts: Understanding and Mitigating the Factuality Gap between Fine-Tuned LLMs"
8 / 8 papers shown
Title
Supervised Knowledge Makes Large Language Models Better In-context Learners
Linyi Yang
Shuibai Zhang
Zhuohao Yu
Guangsheng Bao
Yidong Wang
...
Ruochen Xu
Weirong Ye
Xing Xie
Weizhu Chen
Yue Zhang
62
16
0
26 Dec 2023
Knowledgeable In-Context Tuning: Exploring and Exploiting Factual Knowledge for In-Context Learning
Jiadong Wang
Chengyu Wang
Chuanqi Tan
Jun Huang
Ming Gao
KELM
63
6
0
26 Sep 2023
Can We Edit Factual Knowledge by In-Context Learning?
Ce Zheng
Lei Li
Qingxiu Dong
Yuxuan Fan
Zhiyong Wu
Jingjing Xu
Baobao Chang
KELM
48
199
0
22 May 2023
Large Language Models Struggle to Learn Long-Tail Knowledge
Nikhil Kandpal
H. Deng
Adam Roberts
Eric Wallace
Colin Raffel
RALM
KELM
71
409
0
15 Nov 2022
Locating and Editing Factual Associations in GPT
Kevin Meng
David Bau
A. Andonian
Yonatan Belinkov
KELM
119
1,275
0
10 Feb 2022
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
383
41,106
0
28 May 2020
Language Models as Knowledge Bases?
Fabio Petroni
Tim Rocktaschel
Patrick Lewis
A. Bakhtin
Yuxiang Wu
Alexander H. Miller
Sebastian Riedel
KELM
AI4MH
515
2,639
0
03 Sep 2019
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Nils Reimers
Iryna Gurevych
513
11,979
0
27 Aug 2019
1