ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.23185
  4. Cited By
Improving the Effective Receptive Field of Message-Passing Neural Networks

Improving the Effective Receptive Field of Message-Passing Neural Networks

29 May 2025
Shahaf E. Finder
Ron Shapira Weber
Moshe Eliasof
Oren Freifeld
Eran Treister
ArXiv (abs)PDFHTML

Papers citing "Improving the Effective Receptive Field of Message-Passing Neural Networks"

48 / 48 papers shown
Title
Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement
Huidong Liang
Haitz Sáez de Ocáriz Borde
Baskaran Sripathmanathan
Michael M. Bronstein
Xiaowen Dong
GNN
119
1
0
12 Mar 2025
Wavelet Convolutions for Large Receptive Fields
Wavelet Convolutions for Large Receptive Fields
Shahaf E. Finder
Roy Amoyal
Eran Treister
Oren Freifeld
ViTMDE
108
74
0
08 Jul 2024
Next Level Message-Passing with Hierarchical Support Graphs
Next Level Message-Passing with Hierarchical Support Graphs
Carlos Vonessen
Florian Grötschla
Roger Wattenhofer
81
2
0
22 Jun 2024
SeBot: Structural Entropy Guided Multi-View Contrastive Learning for
  Social Bot Detection
SeBot: Structural Entropy Guided Multi-View Contrastive Learning for Social Bot Detection
Yingguang Yang
Qi Wu
Buyun He
Hao Peng
Renyu Yang
Zhifeng Hao
Yong Liao
AAML
90
9
0
18 May 2024
Graph Mamba: Towards Learning on Graphs with State Space Models
Graph Mamba: Towards Learning on Graphs with State Space Models
Ali Behrouz
Farnoosh Hashemi
AI4CE
178
68
0
13 Feb 2024
From Continuous Dynamics to Graph Neural Networks: Neural Diffusion and
  Beyond
From Continuous Dynamics to Graph Neural Networks: Neural Diffusion and Beyond
Andi Han
Dai Shi
Lequan Lin
Junbin Gao
AI4CEGNN
69
24
0
16 Oct 2023
Cooperative Graph Neural Networks
Cooperative Graph Neural Networks
Ben Finkelshtein
Xingyue Huang
Michael M. Bronstein
.Ismail .Ilkan Ceylan
GNN
81
25
0
02 Oct 2023
Where Did the Gap Go? Reassessing the Long-Range Graph Benchmark
Where Did the Gap Go? Reassessing the Long-Range Graph Benchmark
Jan Tönshoff
Martin Ritzert
Eran Rosenbluth
Martin Grohe
81
54
0
01 Sep 2023
QDC: Quantum Diffusion Convolution Kernels on Graphs
QDC: Quantum Diffusion Convolution Kernels on Graphs
Thomas Markovich
GNN
44
4
0
20 Jul 2023
A Fractional Graph Laplacian Approach to Oversmoothing
A Fractional Graph Laplacian Approach to Oversmoothing
Sohir Maskey
Raffaele Paolino
Aras Bacho
Gitta Kutyniok
105
37
0
22 May 2023
DRew: Dynamically Rewired Message Passing with Delay
DRew: Dynamically Rewired Message Passing with Delay
Benjamin Gutteridge
Xiaowen Dong
Michael M. Bronstein
Francesco Di Giovanni
75
67
0
13 May 2023
Exphormer: Sparse Transformers for Graphs
Exphormer: Sparse Transformers for Graphs
Hamed Shirzad
A. Velingker
B. Venkatachalam
Danica J. Sutherland
A. Sinop
58
117
0
10 Mar 2023
A critical look at the evaluation of GNNs under heterophily: Are we
  really making progress?
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
Oleg Platonov
Denis Kuznedelev
Michael Diskin
Artem Babenko
Liudmila Prokhorenkova
90
222
0
22 Feb 2023
On Over-Squashing in Message Passing Neural Networks: The Impact of
  Width, Depth, and Topology
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
Pietro Lio
Michael M. Bronstein
106
120
0
06 Feb 2023
Improving Graph Neural Networks with Learnable Propagation Operators
Improving Graph Neural Networks with Learnable Propagation Operators
Moshe Eliasof
Lars Ruthotto
Eran Treister
71
23
0
31 Oct 2022
Hierarchical Graph Transformer with Adaptive Node Sampling
Hierarchical Graph Transformer with Adaptive Node Sampling
Zaixin Zhang
Qi Liu
Qingyong Hu
Cheekong Lee
149
91
0
08 Oct 2022
Long Range Graph Benchmark
Long Range Graph Benchmark
Vijay Prakash Dwivedi
Ladislav Rampášek
Mikhail Galkin
Alipanah Parviz
Guy Wolf
Anh Tuan Luu
Dominique Beaini
84
218
0
16 Jun 2022
Capturing Graphs with Hypo-Elliptic Diffusions
Capturing Graphs with Hypo-Elliptic Diffusions
Csaba Tóth
Darrick Lee
Celia Hacker
Harald Oberhauser
87
13
0
27 May 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
Anh Tuan Luu
Guy Wolf
Dominique Beaini
125
576
0
25 May 2022
How Powerful are Spectral Graph Neural Networks
How Powerful are Spectral Graph Neural Networks
Xiyuan Wang
Muhan Zhang
126
201
0
23 May 2022
Finding Global Homophily in Graph Neural Networks When Meeting
  Heterophily
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
Xiang Li
Renyu Zhu
Yao Cheng
Caihua Shan
Siqiang Luo
Dongsheng Li
Wei Qian
72
194
0
15 May 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
108
448
0
29 Nov 2021
Simplifying approach to Node Classification in Graph Neural Networks
Simplifying approach to Node Classification in Graph Neural Networks
S. Maurya
Xin Liu
T. Murata
125
79
0
12 Nov 2021
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both
  Homophily and Heterophily
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily
Lun Du
Xiaozhou Shi
Qiang Fu
Xiaojun Ma
Hengyu Liu
Shi Han
Dongmei Zhang
105
113
0
29 Oct 2021
Beltrami Flow and Neural Diffusion on Graphs
Beltrami Flow and Neural Diffusion on Graphs
B. Chamberlain
J. Rowbottom
D. Eynard
Francesco Di Giovanni
Xiaowen Dong
M. Bronstein
AI4CE
73
86
0
18 Oct 2021
Haar Wavelet Feature Compression for Quantized Graph Convolutional
  Networks
Haar Wavelet Feature Compression for Quantized Graph Convolutional Networks
Moshe Eliasof
Ben Bodner
Eran Treister
GNN
65
9
0
10 Oct 2021
Rethinking Graph Transformers with Spectral Attention
Rethinking Graph Transformers with Spectral Attention
Devin Kreuzer
Dominique Beaini
William L. Hamilton
Vincent Létourneau
Prudencio Tossou
102
545
0
07 Jun 2021
Combinatorial optimization and reasoning with graph neural networks
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
82
360
0
18 Feb 2021
Beyond Low-frequency Information in Graph Convolutional Networks
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
179
591
0
04 Jan 2021
Hierarchical Message-Passing Graph Neural Networks
Hierarchical Message-Passing Graph Neural Networks
Zhiqiang Zhong
Cheng-Te Li
Jun Pang
86
49
0
08 Sep 2020
Masked Label Prediction: Unified Message Passing Model for
  Semi-Supervised Classification
Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification
Yunsheng Shi
Zhengjie Huang
Shikun Feng
Hui Zhong
Wenjin Wang
Yu Sun
AI4CE
101
794
0
08 Sep 2020
Adaptive Universal Generalized PageRank Graph Neural Network
Adaptive Universal Generalized PageRank Graph Neural Network
Eli Chien
Jianhao Peng
Pan Li
O. Milenkovic
269
742
0
14 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical
  Implications
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
98
694
0
09 Jun 2020
Diffusion Improves Graph Learning
Diffusion Improves Graph Learning
Johannes Klicpera
Stefan Weißenberger
Stephan Günnemann
GNN
155
711
0
28 Oct 2019
Strategies for Pre-training Graph Neural Networks
Strategies for Pre-training Graph Neural Networks
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Zitnik
Percy Liang
Vijay S. Pande
J. Leskovec
SSLAI4CE
118
1,416
0
29 May 2019
Revisiting Graph Neural Networks: All We Have is Low-Pass Filters
Revisiting Graph Neural Networks: All We Have is Low-Pass Filters
Hoang NT
Takanori Maehara
GNN
130
434
0
23 May 2019
Graph U-Nets
Graph U-Nets
Hongyang Gao
Shuiwang Ji
AI4CESSLSSegGNN
132
1,095
0
11 May 2019
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified
  Neighborhood Mixing
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
Sami Abu-El-Haija
Bryan Perozzi
Amol Kapoor
N. Alipourfard
Kristina Lerman
Hrayr Harutyunyan
Greg Ver Steeg
Aram Galstyan
GNN
97
916
0
30 Apr 2019
Graph Neural Networks for Social Recommendation
Graph Neural Networks for Social Recommendation
Wenqi Fan
Yao Ma
Qing Li
Yuan He
Yue Zhao
Jiliang Tang
Dawei Yin
253
1,904
0
19 Feb 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
257
7,705
0
01 Oct 2018
Hierarchical Graph Representation Learning with Differentiable Pooling
Hierarchical Graph Representation Learning with Differentiable Pooling
Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
310
2,155
0
22 Jun 2018
GeniePath: Graph Neural Networks with Adaptive Receptive Paths
GeniePath: Graph Neural Networks with Adaptive Receptive Paths
Ziqi Liu
Chaochao Chen
Longfei Li
Jun Zhou
Xiaolong Li
Le Song
Yuan Qi
GNN
99
313
0
03 Feb 2018
Residual Gated Graph ConvNets
Residual Gated Graph ConvNets
Xavier Bresson
T. Laurent
GNN
124
485
0
20 Nov 2017
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
481
20,233
0
30 Oct 2017
Inductive Representation Learning on Large Graphs
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
514
15,331
0
07 Jun 2017
Understanding the Effective Receptive Field in Deep Convolutional Neural
  Networks
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
Wenjie Luo
Yujia Li
R. Urtasun
R. Zemel
HAI
102
1,799
0
15 Jan 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
665
29,156
0
09 Sep 2016
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
434
43,832
0
01 May 2014
1