ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.23081
  4. Cited By
Gradient Methods with Online Scaling Part I. Theoretical Foundations

Gradient Methods with Online Scaling Part I. Theoretical Foundations

29 May 2025
Wenzhi Gao
Ya-Chi Chu
Yinyu Ye
Madeleine Udell
ArXiv (abs)PDFHTML

Papers citing "Gradient Methods with Online Scaling Part I. Theoretical Foundations"

22 / 22 papers shown
Title
Gradient Methods with Online Scaling
Gradient Methods with Online Scaling
Wenzhi Gao
Ya-Chi Chu
Yinyu Ye
Madeleine Udell
78
4
0
04 Nov 2024
Online Learning Guided Quasi-Newton Methods with Global Non-Asymptotic
  Convergence
Online Learning Guided Quasi-Newton Methods with Global Non-Asymptotic Convergence
Ruichen Jiang
Aryan Mokhtari
13
4
0
03 Oct 2024
Adam-mini: Use Fewer Learning Rates To Gain More
Adam-mini: Use Fewer Learning Rates To Gain More
Yushun Zhang
Congliang Chen
Ziniu Li
Tian Ding
Chenwei Wu
Yinyu Ye
Zhi-Quan Luo
Ruoyu Sun
90
56
0
24 Jun 2024
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
Kaan Ozkara
Can Karakus
Parameswaran Raman
Mingyi Hong
Shoham Sabach
Branislav Kveton
Volkan Cevher
77
3
0
17 Jan 2024
A simple uniformly optimal method without line search for convex
  optimization
A simple uniformly optimal method without line search for convex optimization
Tianjiao Li
Guanghui Lan
72
22
0
16 Oct 2023
Adaptive Proximal Gradient Method for Convex Optimization
Adaptive Proximal Gradient Method for Convex Optimization
Yura Malitsky
Konstantin Mishchenko
50
24
0
04 Aug 2023
Unconstrained Online Learning with Unbounded Losses
Unconstrained Online Learning with Unbounded Losses
Andrew Jacobsen
Ashok Cutkosky
55
18
0
08 Jun 2023
Searching for Optimal Per-Coordinate Step-sizes with Multidimensional
  Backtracking
Searching for Optimal Per-Coordinate Step-sizes with Multidimensional Backtracking
Frederik Kunstner
V. S. Portella
Mark Schmidt
Nick Harvey
73
10
0
05 Jun 2023
Online Learning Guided Curvature Approximation: A Quasi-Newton Method
  with Global Non-Asymptotic Superlinear Convergence
Online Learning Guided Curvature Approximation: A Quasi-Newton Method with Global Non-Asymptotic Superlinear Convergence
Ruichen Jiang
Qiujiang Jin
Aryan Mokhtari
41
19
0
16 Feb 2023
No-Regret Dynamics in the Fenchel Game: A Unified Framework for
  Algorithmic Convex Optimization
No-Regret Dynamics in the Fenchel Game: A Unified Framework for Algorithmic Convex Optimization
Jun-Kun Wang
Jacob D. Abernethy
Kfir Y. Levy
70
23
0
22 Nov 2021
AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed
  Gradients
AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients
Juntang Zhuang
Tommy M. Tang
Yifan Ding
S. Tatikonda
Nicha Dvornek
X. Papademetris
James S. Duncan
ODL
165
517
0
15 Oct 2020
Non-asymptotic Superlinear Convergence of Standard Quasi-Newton Methods
Non-asymptotic Superlinear Convergence of Standard Quasi-Newton Methods
Qiujiang Jin
Aryan Mokhtari
49
42
0
30 Mar 2020
Disentangling Adaptive Gradient Methods from Learning Rates
Disentangling Adaptive Gradient Methods from Learning Rates
Naman Agarwal
Rohan Anil
Elad Hazan
Tomer Koren
Cyril Zhang
90
38
0
26 Feb 2020
A Second look at Exponential and Cosine Step Sizes: Simplicity,
  Adaptivity, and Performance
A Second look at Exponential and Cosine Step Sizes: Simplicity, Adaptivity, and Performance
Xiaoyun Li
Zhenxun Zhuang
Francesco Orabona
58
19
0
12 Feb 2020
Introduction to Online Convex Optimization
Introduction to Online Convex Optimization
Elad Hazan
OffRL
175
1,932
0
07 Sep 2019
On the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
99
2,504
0
19 Apr 2019
Surrogate Losses for Online Learning of Stepsizes in Stochastic
  Non-Convex Optimization
Surrogate Losses for Online Learning of Stepsizes in Stochastic Non-Convex Optimization
Zhenxun Zhuang
Ashok Cutkosky
Francesco Orabona
75
5
0
25 Jan 2019
Shampoo: Preconditioned Stochastic Tensor Optimization
Shampoo: Preconditioned Stochastic Tensor Optimization
Vineet Gupta
Tomer Koren
Y. Singer
ODL
90
224
0
26 Feb 2018
Online Learning Rate Adaptation with Hypergradient Descent
Online Learning Rate Adaptation with Hypergradient Descent
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark Schmidt
Frank Wood
ODL
77
247
0
14 Mar 2017
Coin Betting and Parameter-Free Online Learning
Coin Betting and Parameter-Free Online Learning
Francesco Orabona
D. Pál
162
166
0
12 Feb 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
Adaptive Bound Optimization for Online Convex Optimization
Adaptive Bound Optimization for Online Convex Optimization
H. B. McMahan
Matthew J. Streeter
ODL
101
390
0
26 Feb 2010
1