Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.23049
Cited By
DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration
29 May 2025
Tianteng Gu
Bei Liu
Bo Xiao
Ke Zeng
Jiacheng Liu
Y. Qian
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DenoiseRotator: Enhance Pruning Robustness for LLMs via Importance Concentration"
7 / 7 papers shown
Title
SpinQuant: LLM quantization with learned rotations
Zechun Liu
Changsheng Zhao
Igor Fedorov
Bilge Soran
Dhruv Choudhary
Raghuraman Krishnamoorthi
Vikas Chandra
Yuandong Tian
Tijmen Blankevoort
MQ
160
105
0
21 Feb 2025
VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models
Yifei Liu
Jicheng Wen
Yang Wang
Shengyu Ye
Li Lyna Zhang
Ting Cao
Cheng Li
Mao Yang
MQ
164
12
0
25 Sep 2024
Geoopt: Riemannian Optimization in PyTorch
Max Kochurov
R. Karimov
Sergei Kozlukov
36
118
0
06 May 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
118
42,038
0
03 Dec 2019
Riemannian Adaptive Optimization Methods
Gary Bécigneul
O. Ganea
ODL
78
254
0
01 Oct 2018
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
314
129,831
0
12 Jun 2017
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
172
8,793
0
01 Oct 2015
1