Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.20697
Cited By
Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series
27 May 2025
Zachary C. Brown
David Carlson
CML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series"
13 / 13 papers shown
Title
Adjustment Identification Distance: A gadjid for Causal Structure Learning
Leonard Henckel
Theo Würtzen
Sebastian Weichwald
CML
55
9
0
13 Feb 2024
Multiscale Causal Structure Learning
Gabriele DÁcunto
P. Lorenzo
Sergio Barbarossa
73
6
0
16 Jul 2022
Causal Discovery from Conditionally Stationary Time Series
Carles Balsells-Rodas
Ruibo Tu
Tanmayee Narendra
Yingzhen Li
Gabriele Schweikert
Hedvig Kjellström
Yingzhen Li
AI4TS
BDL
CML
117
6
0
12 Oct 2021
Granger Causality: A Review and Recent Advances
Ali Shojaie
E. Fox
CML
AI4TS
63
269
0
05 May 2021
Neural Additive Vector Autoregression Models for Causal Discovery in Time Series
Bart Bussmann
Jannes Nys
Steven Latré
CML
BDL
25
25
0
19 Oct 2020
High-recall causal discovery for autocorrelated time series with latent confounders
Andreas Gerhardus
J. Runge
CML
AI4TS
48
102
0
03 Jul 2020
Estimating a Brain Network Predictive of Stress and Genotype with Supervised Autoencoders
Austin Talbot
David B. Dunson
K. Dzirasa
David Carlson
13
4
0
10 Apr 2020
Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets
Jakob Runge
57
193
0
07 Mar 2020
Causal structure learning from time series: Large regression coefficients may predict causal links better in practice than small p-values
S. Weichwald
M. E. Jakobsen
Phillip B. Mogensen
Lasse Petersen
Nikolaj Thams
Gherardo Varando
CML
AI4TS
73
27
0
21 Feb 2020
Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models
Erdun Gao
Kun Zhang
Biwei Huang
Clark Glymour
CML
AI4TS
53
64
0
26 May 2019
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDL
CML
GNN
69
486
0
22 Apr 2019
What can be estimated? Identifiability, estimability, causal inference and ill-posed inverse problems
Oliver J. Maclaren
R. Nicholson
49
35
0
04 Apr 2019
Bayesian Nonparametric Inference of Switching Linear Dynamical Systems
E. Fox
Erik B. Sudderth
Michael I. Jordan
A. Willsky
86
244
0
19 Mar 2010
1