ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.20126
  4. Cited By
OB3D: A New Dataset for Benchmarking Omnidirectional 3D Reconstruction Using Blender

OB3D: A New Dataset for Benchmarking Omnidirectional 3D Reconstruction Using Blender

26 May 2025
Shintaro Ito
Natsuki Takama
Toshiki Watanabe
Koichi Ito
Hwann-Tzong Chen
T. Aoki
ArXiv (abs)PDFHTML

Papers citing "OB3D: A New Dataset for Benchmarking Omnidirectional 3D Reconstruction Using Blender"

3 / 3 papers shown
Title
HoGS: Unified Near and Far Object Reconstruction via Homogeneous Gaussian Splatting
HoGS: Unified Near and Far Object Reconstruction via Homogeneous Gaussian Splatting
Xinpeng Liu
Zeyi Huang
Fumio Okura
Y. Matsushita
84
1
0
25 Mar 2025
PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction
PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction
Danpeng Chen
Hai Li
Weicai Ye
Yifan Wang
Weijian Xie
Shangjin Zhai
Nan Wang
Haomin Liu
Hujun Bao
Guofeng Zhang
3DGS
128
81
0
10 Jun 2024
2D Gaussian Splatting for Geometrically Accurate Radiance Fields
2D Gaussian Splatting for Geometrically Accurate Radiance Fields
Binbin Huang
Zehao Yu
Anpei Chen
Andreas Geiger
Shenghua Gao
3DGS
237
488
0
26 Mar 2024
1