ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.19634
  4. Cited By
Faster and Better LLMs via Latency-Aware Test-Time Scaling
v1v2v3 (latest)

Faster and Better LLMs via Latency-Aware Test-Time Scaling

26 May 2025
Zili Wang
Tianyu Zhang
Haoli Bai
Lu Hou
Xianzhi Yu
Wulong Liu
Shiming Xiang
Lei Zhu
Author Contacts:
wangzili2022@ia.ac.cnzhangtianyu59@huawei.comzhulei168@huawei.com
    LRM
ArXiv (abs)PDFHTML

Papers citing "Faster and Better LLMs via Latency-Aware Test-Time Scaling"

15 / 15 papers shown
Title
Heimdall: test-time scaling on the generative verification
Heimdall: test-time scaling on the generative verification
Wenlei Shi
Xing Jin
LRM
93
6
0
14 Apr 2025
EAGLE-3: Scaling up Inference Acceleration of Large Language Models via Training-Time Test
EAGLE-3: Scaling up Inference Acceleration of Large Language Models via Training-Time Test
Yuhui Li
Fangyun Wei
Chao Zhang
Hongyang R. Zhang
186
14
0
03 Mar 2025
Towards Thinking-Optimal Scaling of Test-Time Compute for LLM Reasoning
Towards Thinking-Optimal Scaling of Test-Time Compute for LLM Reasoning
Wenkai Yang
Shuming Ma
Yankai Lin
Furu Wei
LRM
94
45
0
25 Feb 2025
rStar-Math: Small LLMs Can Master Math Reasoning with Self-Evolved Deep Thinking
rStar-Math: Small LLMs Can Master Math Reasoning with Self-Evolved Deep Thinking
Xinyu Guan
Lefei Zhang
Yifei Liu
Ning Shang
Youran Sun
Yi Zhu
Fan Yang
Mao Yang
LRMSyDaReLM
113
118
0
08 Jan 2025
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Bradley Brown
Jordan Juravsky
Ryan Ehrlich
Ronald Clark
Quoc V. Le
Christopher Ré
Azalia Mirhoseini
ALMLRM
231
302
0
03 Jan 2025
Scaling LLM Test-Time Compute Optimally can be More Effective than
  Scaling Model Parameters
Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
Charlie Snell
Jaehoon Lee
Kelvin Xu
Aviral Kumar
LRM
176
644
0
06 Aug 2024
EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
Yuhui Li
Fangyun Wei
Chao Zhang
Hongyang R. Zhang
135
77
0
24 Jun 2024
Mixture-of-Agents Enhances Large Language Model Capabilities
Mixture-of-Agents Enhances Large Language Model Capabilities
Junlin Wang
Jue Wang
Ben Athiwaratkun
Ce Zhang
James Zou
LLMAGAIFin
80
129
0
07 Jun 2024
EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty
EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty
Yuhui Li
Fangyun Wei
Chao Zhang
Hongyang R. Zhang
106
156
0
26 Jan 2024
Medusa: Simple LLM Inference Acceleration Framework with Multiple
  Decoding Heads
Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads
Tianle Cai
Yuhong Li
Zhengyang Geng
Hongwu Peng
Jason D. Lee
De-huai Chen
Tri Dao
127
299
0
19 Jan 2024
GPQA: A Graduate-Level Google-Proof Q&A Benchmark
GPQA: A Graduate-Level Google-Proof Q&A Benchmark
David Rein
Betty Li Hou
Asa Cooper Stickland
Jackson Petty
Richard Yuanzhe Pang
Julien Dirani
Julian Michael
Samuel R. Bowman
AI4MHELM
92
682
0
20 Nov 2023
Accelerating Large Language Model Decoding with Speculative Sampling
Accelerating Large Language Model Decoding with Speculative Sampling
Charlie Chen
Sebastian Borgeaud
G. Irving
Jean-Baptiste Lespiau
Laurent Sifre
J. Jumper
BDLLRM
87
422
0
02 Feb 2023
Fast Inference from Transformers via Speculative Decoding
Fast Inference from Transformers via Speculative Decoding
Yaniv Leviathan
Matan Kalman
Yossi Matias
LRM
145
706
0
30 Nov 2022
Self-Consistency Improves Chain of Thought Reasoning in Language Models
Self-Consistency Improves Chain of Thought Reasoning in Language Models
Xuezhi Wang
Jason W. Wei
Dale Schuurmans
Quoc Le
Ed H. Chi
Sharan Narang
Aakanksha Chowdhery
Denny Zhou
ReLMBDLLRMAI4CE
516
3,646
0
21 Mar 2022
Measuring Mathematical Problem Solving With the MATH Dataset
Measuring Mathematical Problem Solving With the MATH Dataset
Dan Hendrycks
Collin Burns
Saurav Kadavath
Akul Arora
Steven Basart
Eric Tang
Basel Alomair
Jacob Steinhardt
ReLMFaML
173
2,265
0
05 Mar 2021
1