ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.19552
  4. Cited By
On scalable and efficient training of diffusion samplers

On scalable and efficient training of diffusion samplers

26 May 2025
Minkyu Kim
Kiyoung Seong
Dongyeop Woo
SungSoo Ahn
Minsu Kim
    DiffM
ArXivPDFHTML

Papers citing "On scalable and efficient training of diffusion samplers"

31 / 31 papers shown
Title
Underdamped Diffusion Bridges with Applications to Sampling
Denis Blessing
Julius Berner
Lorenz Richter
Gerhard Neumann
DiffM
113
6
0
02 Mar 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
115
8
0
10 Jan 2025
Sequential Controlled Langevin Diffusions
Sequential Controlled Langevin Diffusions
Junhua Chen
Lorenz Richter
Julius Berner
Denis Blessing
Gerhard Neumann
A. Anandkumar
111
20
0
10 Dec 2024
NETS: A Non-Equilibrium Transport Sampler
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
104
21
0
03 Oct 2024
Adaptive teachers for amortized samplers
Adaptive teachers for amortized samplers
Minsu Kim
Sanghyeok Choi
Taeyoung Yun
Emmanuel Bengio
Leo Feng
Jarrid Rector-Brooks
Sungsoo Ahn
Jinkyoo Park
Nikolay Malkin
Yoshua Bengio
447
7
0
02 Oct 2024
Transferable Boltzmann Generators
Transferable Boltzmann Generators
Leon Klein
Frank Noé
95
17
0
20 Jun 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
87
22
0
11 Jun 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
72
55
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
157
26
0
07 Feb 2024
Improving Gradient-guided Nested Sampling for Posterior Inference
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
Yoshua Bengio
Y. Hezaveh
Laurence Perreault Levasseur
BDL
85
10
0
06 Dec 2023
Towards equilibrium molecular conformation generation with GFlowNets
Towards equilibrium molecular conformation generation with GFlowNets
Alexandra Volokhova
Michal Koziarski
Alex Hernández-García
Cheng-Hao Liu
Santiago Miret
Pablo Lemos
Luca Thiede
Zichao Yan
Alán Aspuru-Guzik
Yoshua Bengio
57
11
0
20 Oct 2023
Local Search GFlowNets
Local Search GFlowNets
Minsu Kim
Taeyoung Yun
Emmanuel Bengio
Dinghuai Zhang
Yoshua Bengio
SungSoo Ahn
Jinkyoo Park
59
37
0
04 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
69
46
0
04 Oct 2023
Denoising Diffusion Samplers
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
52
87
0
27 Feb 2023
Better Training of GFlowNets with Local Credit and Incomplete
  Trajectories
Better Training of GFlowNets with Local Credit and Incomplete Trajectories
L. Pan
Nikolay Malkin
Dinghuai Zhang
Yoshua Bengio
71
69
0
03 Feb 2023
A theory of continuous generative flow networks
A theory of continuous generative flow networks
Salem Lahlou
T. Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernández-García
Léna Néhale Ezzine
Yoshua Bengio
Nikolay Malkin
AI4CE
84
90
0
30 Jan 2023
An optimal control perspective on diffusion-based generative modeling
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
113
92
0
02 Nov 2022
Generative Augmented Flow Networks
Generative Augmented Flow Networks
L. Pan
Dinghuai Zhang
Aaron Courville
Longbo Huang
Yoshua Bengio
151
47
0
07 Oct 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
187
86
0
02 Oct 2022
Learning GFlowNets from partial episodes for improved convergence and
  stability
Learning GFlowNets from partial episodes for improved convergence and stability
Kanika Madan
Jarrid Rector-Brooks
Maksym Korablyov
Emmanuel Bengio
Moksh Jain
A. Nica
Tom Bosc
Yoshua Bengio
Nikolay Malkin
63
98
0
26 Sep 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
97
91
0
03 Aug 2022
The Primacy Bias in Deep Reinforcement Learning
The Primacy Bias in Deep Reinforcement Learning
Evgenii Nikishin
Max Schwarzer
P. DÓro
Pierre-Luc Bacon
Rameswar Panda
OnRL
137
193
0
16 May 2022
Equivariant Diffusion for Molecule Generation in 3D
Equivariant Diffusion for Molecule Generation in 3D
Emiel Hoogeboom
Victor Garcia Satorras
Clément Vignac
Max Welling
DiffM
120
608
0
31 Mar 2022
Bayesian Structure Learning with Generative Flow Networks
Bayesian Structure Learning with Generative Flow Networks
T. Deleu
António Góis
Chris C. Emezue
M. Rankawat
Simon Lacoste-Julien
Stefan Bauer
Yoshua Bengio
BDL
88
155
0
28 Feb 2022
Trajectory balance: Improved credit assignment in GFlowNets
Trajectory balance: Improved credit assignment in GFlowNets
Nikolay Malkin
Moksh Jain
Emmanuel Bengio
Chen Sun
Yoshua Bengio
207
180
0
31 Jan 2022
Path Integral Sampler: a stochastic control approach for sampling
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
87
114
0
30 Nov 2021
GFlowNet Foundations
GFlowNet Foundations
Yoshua Bengio
Salem Lahlou
T. Deleu
J. E. Hu
Mo Tiwari
Emmanuel Bengio
48
230
0
17 Nov 2021
Flow Network based Generative Models for Non-Iterative Diverse Candidate
  Generation
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
101
328
0
08 Jun 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
111
1,022
0
19 Feb 2021
Sample-Efficient Optimization in the Latent Space of Deep Generative
  Models via Weighted Retraining
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp
Erik A. Daxberger
José Miguel Hernández-Lobato
MedIm
63
140
0
16 Jun 2020
Exploration by Random Network Distillation
Exploration by Random Network Distillation
Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
157
1,332
0
30 Oct 2018
1