ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.18786
  4. Cited By
Leveraging Per-Instance Privacy for Machine Unlearning

Leveraging Per-Instance Privacy for Machine Unlearning

24 May 2025
N. Sepahvand
Anvith Thudi
Berivan Isik
Ashmita Bhattacharyya
Nicolas Papernot
Eleni Triantafillou
Daniel M. Roy
Gintare Karolina Dziugaite
    MU
    FedML
ArXivPDFHTML

Papers citing "Leveraging Per-Instance Privacy for Machine Unlearning"

10 / 10 papers shown
Title
Do Unlearning Methods Remove Information from Language Model Weights?
Do Unlearning Methods Remove Information from Language Model Weights?
Aghyad Deeb
Fabien Roger
AAML
MU
67
21
0
11 Oct 2024
Machine Unlearning Fails to Remove Data Poisoning Attacks
Machine Unlearning Fails to Remove Data Poisoning Attacks
Martin Pawelczyk
Jimmy Z. Di
Yiwei Lu
Gautam Kamath
Ayush Sekhari
Seth Neel
AAML
MU
84
12
0
25 Jun 2024
Threats, Attacks, and Defenses in Machine Unlearning: A Survey
Threats, Attacks, and Defenses in Machine Unlearning: A Survey
Ziyao Liu
Huanyi Ye
Chen Chen
Yongsen Zheng
K. Lam
AAML
MU
79
30
0
20 Mar 2024
The Role of Permutation Invariance in Linear Mode Connectivity of Neural
  Networks
The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks
R. Entezari
Hanie Sedghi
O. Saukh
Behnam Neyshabur
MoMe
72
226
0
12 Oct 2021
Deep Learning on a Data Diet: Finding Important Examples Early in
  Training
Deep Learning on a Data Diet: Finding Important Examples Early in Training
Mansheej Paul
Surya Ganguli
Gintare Karolina Dziugaite
100
446
0
15 Jul 2021
Randomness In Neural Network Training: Characterizing The Impact of
  Tooling
Randomness In Neural Network Training: Characterizing The Impact of Tooling
Donglin Zhuang
Xingyao Zhang
Shuaiwen Leon Song
Sara Hooker
47
76
0
22 Jun 2021
Deep learning versus kernel learning: an empirical study of loss
  landscape geometry and the time evolution of the Neural Tangent Kernel
Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel
Stanislav Fort
Gintare Karolina Dziugaite
Mansheej Paul
Sepideh Kharaghani
Daniel M. Roy
Surya Ganguli
91
187
0
28 Oct 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
464
40,217
0
22 Oct 2020
Characterizing Structural Regularities of Labeled Data in
  Overparameterized Models
Characterizing Structural Regularities of Labeled Data in Overparameterized Models
Ziheng Jiang
Chiyuan Zhang
Kunal Talwar
Michael C. Mozer
TDI
48
99
0
08 Feb 2020
Certified Data Removal from Machine Learning Models
Certified Data Removal from Machine Learning Models
Chuan Guo
Tom Goldstein
Awni Y. Hannun
Laurens van der Maaten
MU
82
434
0
08 Nov 2019
1