Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.18535
Cited By
Convergence, Sticking and Escape: Stochastic Dynamics Near Critical Points in SGD
24 May 2025
Dmitry Dudukalov
Artem Logachov
Vladimir Lotov
Timofei Prasolov
Evgeny Prokopenko
Anton Tarasenko
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence, Sticking and Escape: Stochastic Dynamics Near Critical Points in SGD"
23 / 23 papers shown
Title
A weak convergence approach to large deviations for stochastic approximations
H. Hult
Adam Lindhe
Pierre Nyquist
Guo-Jhen Wu
83
2
0
04 Feb 2025
Revisiting Step-Size Assumptions in Stochastic Approximation
Caio Kalil Lauand
Sean P. Meyn
61
2
0
28 May 2024
Stochastic Gradient Flow Dynamics of Test Risk and its Exact Solution for Weak Features
Rodrigo Veiga
Anastasia Remizova
Nicolas Macris
66
1
0
12 Feb 2024
Type-II Saddles and Probabilistic Stability of Stochastic Gradient Descent
Liu Ziyin
Botao Li
Tomer Galanti
Masakuni Ueda
55
7
0
23 Mar 2023
Large deviations rates for stochastic gradient descent with strongly convex functions
Dragana Bajović
D. Jakovetić
S. Kar
51
6
0
02 Nov 2022
Incremental Learning in Diagonal Linear Networks
Raphael Berthier
CLL
AI4CE
50
17
0
31 Aug 2022
On uniform-in-time diffusion approximation for stochastic gradient descent
Lei Li
Yuliang Wang
76
4
0
11 Jul 2022
The effective noise of Stochastic Gradient Descent
Francesca Mignacco
Pierfrancesco Urbani
25
38
0
20 Dec 2021
SGD with a Constant Large Learning Rate Can Converge to Local Maxima
Liu Ziyin
Botao Li
James B. Simon
Masakuni Ueda
46
9
0
25 Jul 2021
On Proximal Policy Optimization's Heavy-tailed Gradients
Saurabh Garg
Joshua Zhanson
Emilio Parisotto
Adarsh Prasad
J. Zico Kolter
Zachary Chase Lipton
Sivaraman Balakrishnan
Ruslan Salakhutdinov
Pradeep Ravikumar
64
13
0
20 Feb 2021
Eliminating Sharp Minima from SGD with Truncated Heavy-tailed Noise
Xingyu Wang
Sewoong Oh
C. Rhee
35
16
0
08 Feb 2021
Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification
Francesca Mignacco
Florent Krzakala
Pierfrancesco Urbani
Lenka Zdeborová
MLT
52
68
0
10 Jun 2020
On the Heavy-Tailed Theory of Stochastic Gradient Descent for Deep Neural Networks
Umut Simsekli
Mert Gurbuzbalaban
T. H. Nguyen
G. Richard
Levent Sagun
68
58
0
29 Nov 2019
First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise
T. H. Nguyen
Umut Simsekli
Mert Gurbuzbalaban
G. Richard
53
64
0
21 Jun 2019
Accelerating Minibatch Stochastic Gradient Descent using Typicality Sampling
Xinyu Peng
Li Li
Feiyue Wang
BDL
112
59
0
11 Mar 2019
Traditional and Heavy-Tailed Self Regularization in Neural Network Models
Charles H. Martin
Michael W. Mahoney
66
124
0
24 Jan 2019
Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization
T. H. Nguyen
Umut Simsekli
G. Richard
58
28
0
22 Jan 2019
Quasi-potential as an implicit regularizer for the loss function in the stochastic gradient descent
Wenqing Hu
Zhanxing Zhu
Haoyi Xiong
Jun Huan
MLT
31
10
0
18 Jan 2019
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
93
249
0
18 Jan 2019
Stochastic Modified Equations and Dynamics of Stochastic Gradient Algorithms I: Mathematical Foundations
Qianxiao Li
Cheng Tai
E. Weinan
95
150
0
05 Nov 2018
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
243
1,890
0
28 Dec 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
424
2,937
0
15 Sep 2016
Stochastic modified equations and adaptive stochastic gradient algorithms
Qianxiao Li
Cheng Tai
E. Weinan
59
284
0
19 Nov 2015
1